Anna Orlova

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/536085/publications.pdf

Version: 2024-02-01

219 papers

7,908 citations

44069 48 h-index 74163 75 g-index

221 all docs

221 docs citations

times ranked

221

4455 citing authors

#	Article	IF	CITATIONS
1	Tumor Imaging Using a Picomolar Affinity HER2 Binding Affibody Molecule. Cancer Research, 2006, 66, 4339-4348.	0.9	462
2	Molecular Imaging of <i>HER2</i> -Expressing Malignant Tumors in Breast Cancer Patients Using Synthetic ¹¹¹ In- or ⁶⁸ Ga-Labeled Affibody Molecules. Journal of Nuclear Medicine, 2010, 51, 892-897.	5.0	271
3	Measuring HER2-Receptor Expression In Metastatic Breast Cancer Using [⁶⁸ Ga]ABY-025 Affibody PET/CT. Theranostics, 2016, 6, 262-271.	10.0	204
4	Radionuclide Therapy of HER2-Positive Microxenografts Using a 177Lu-Labeled HER2-Specific Affibody Molecule. Cancer Research, 2007, 67, 2773-2782.	0.9	203
5	Synthetic Affibody Molecules: A Novel Class of Affinity Ligands for Molecular Imaging of HER2-Expressing Malignant Tumors. Cancer Research, 2007, 67, 2178-2186.	0.9	176
6	Directed Evolution to Low Nanomolar Affinity of a Tumor-Targeting Epidermal Growth Factor Receptor-Binding Affibody Molecule. Journal of Molecular Biology, 2008, 376, 1388-1402.	4.2	138
7	On the Selection of a Tracer for PET Imaging of HER2-Expressing Tumors: Direct Comparison of a ¹²⁴ I-Labeled Affibody Molecule and Trastuzumab in a Murine Xenograft Model. Journal of Nuclear Medicine, 2009, 50, 417-425.	5.0	131
8	Affibody molecules: potential forin vivoimaging of molecular targets for cancer therapy. Expert Opinion on Biological Therapy, 2007, 7, 555-568.	3.1	117
9	Pharmacologic inhibition of STAT5 in acute myeloid leukemia. Leukemia, 2018, 32, 1135-1146.	7.2	112
10	Slow Internalization of Anti-HER2 Synthetic Affibody Monomer (sup) 111 (sup) In-DOTA-Z (sub) HER2:342-pep2 (sub): Implications for Development of Labeled Tracers. Cancer Biotherapy and Radiopharmaceuticals, 2008, 23, 435-442.	1.0	108
11	Imaging of EGFR expression in murine xenografts using site-specifically labelled anti-EGFR 111In-DOTA-ZEGFR:2377 Affibody molecule: aspect of the injected tracer amount. European Journal of Nuclear Medicine and Molecular Imaging, 2010, 37, 613-622.	6.4	103
12	Same-Day Imaging Using Small Proteins: Clinical Experience and Translational Prospects in Oncology. Journal of Nuclear Medicine, 2018, 59, 885-891.	5.0	101
13	^{99m} Tc-maEEE-Z _{HER2:342} , an Affibody Molecule-Based Tracer for the Detection of HER2 Expression in Malignant Tumors. Bioconjugate Chemistry, 2007, 18, 1956-1964.	3.6	98
14	Affibody Molecules for Epidermal Growth Factor Receptor Targeting In Vivo: Aspects of Dimerization and Labeling Chemistry. Journal of Nuclear Medicine, 2009, 50, 274-283.	5.0	98
15	Targeting of HER2-Expressing Tumors with a Site-Specifically ^{99m} Tc-Labeled Recombinant Affibody Molecule, Z _{HER2:2395} , with C-Terminally Engineered Cysteine. Journal of Nuclear Medicine, 2009, 50, 781-789.	5.0	97
16	Radiolabelled receptor-tyrosine-kinase targeting drugs for patient stratification and monitoring of therapy response: prospects and pitfalls. Lancet Oncology, The, 2010, 11, 992-1000.	10.7	91
17	Biodistribution and Radiation Dosimetry of the Anti-HER2 Affibody Molecule ⁶⁸ Ga-ABY-025 in Breast Cancer Patients. Journal of Nuclear Medicine, 2016, 57, 867-871.	5.0	88
18	Imaging of HER2-expressing tumours using a synthetic Affibody molecule containing the 99mTc-chelating mercaptoacetyl-glycyl-glycyl-glycyl (MAG3) sequence. European Journal of Nuclear Medicine and Molecular Imaging, 2007, 34, 722-733.	6.4	84

#	Article	IF	Citations
19	Evaluation of Maleimide Derivative of DOTA for Site-Specific Labeling of Recombinant Affibody Molecules. Bioconjugate Chemistry, 2008, 19, 235-243.	3.6	83
20	Targeting of <i>HER2</i> -Expressing Tumors Using ¹¹¹ In-ABY-025, a Second-Generation Affibody Molecule with a Fundamentally Reengineered Scaffold. Journal of Nuclear Medicine, 2010, 51, 1131-1138.	5.0	81
21	Molecular Design and Optimization of ^{99m} Tc-Labeled Recombinant Affibody Molecules Improves Their Biodistribution and Imaging Properties. Journal of Nuclear Medicine, 2011, 52, 461-469.	5.0	80
22	99mTc-chelator engineering to improve tumour targeting properties of a HER2-specific Affibody molecule. European Journal of Nuclear Medicine and Molecular Imaging, 2007, 34, 1843-1853.	6.4	79
23	Locally Delivered CD40 Agonist Antibody Accumulates in Secondary Lymphoid Organs and Eradicates Experimental Disseminated Bladder Cancer. Cancer Immunology Research, 2014, 2, 80-90.	3.4	78
24	A HER2-binding Affibody molecule labelled with 68Ga for PET imaging: direct in vivo comparison with the 111In-labelled analogue. European Journal of Nuclear Medicine and Molecular Imaging, 2010, 37, 1356-1367.	6.4	75
25	Site-Specific Radiometal Labeling and Improved Biodistribution Using ABY-027, A Novel HER2-Targeting Affibody Molecule–Albumin-Binding Domain Fusion Protein. Journal of Nuclear Medicine, 2013, 54, 961-968.	5.0	75
26	HEHEHE-Tagged Affibody Molecule May Be Purified by IMAC, Is Conveniently Labeled with [^{99m} Tc(CO) ₃] ⁺ , and Shows Improved Biodistribution with Reduced Hepatic Radioactivity Accumulation. Bioconjugate Chemistry, 2010, 21, 2013-2022.	3.6	72
27	Tumor Targeting Using Affibody Molecules: Interplay of Affinity, Target Expression Level, and Binding Site Composition. Journal of Nuclear Medicine, 2012, 53, 953-960.	5.0	72
28	111In-benzyl-DTPA-ZHER2:342, an affibody-based conjugate for in vivo imaging of HER2 expression in malignant tumors. Journal of Nuclear Medicine, 2006, 47, 846-53.	5.0	72
29	Development and preclinical characterisation of 99mTc-labelled Affibody molecules with reduced renal uptake. European Journal of Nuclear Medicine and Molecular Imaging, 2008, 35, 2245-2255.	6.4	69
30	Direct Targeting Options for STAT3 and STAT5 in Cancer. Cancers, 2019, 11, 1930.	3.7	65
31	Comparative in vivo evaluation of technetium and iodine labels on an anti-HER2 affibody for single-photon imaging of HER2 expression in tumors. Journal of Nuclear Medicine, 2006, 47, 512-9.	5.0	65
32	Affibody-mediated tumour targeting of HER-2 expressing xenografts in mice. European Journal of Nuclear Medicine and Molecular Imaging, 2006, 33, 631-638.	6.4	64
33	Liver uptake of radiolabeled targeting proteins and peptides: considerations for targeting peptide conjugate design. Drug Discovery Today, 2012, 17, 1224-1232.	6.4	64
34	Influence of Labelling Methods on Biodistribution and Imaging Properties of Radiolabelled Peptides for Visualisation of Molecular Therapeutic Targets. Current Medicinal Chemistry, 2010, 17, 2636-2655.	2.4	63
35	Synthesis and Characterization of a High-Affinity NOTA-Conjugated Bombesin Antagonist for GRPR-Targeted Tumor Imaging. Bioconjugate Chemistry, 2013, 24, 1144-1153.	3.6	62
36	Inhibiting HER3-Mediated Tumor Cell Growth with Affibody Molecules Engineered to Low Picomolar Affinity by Position-Directed Error-Prone PCR-Like Diversification. PLoS ONE, 2013, 8, e62791.	2.5	61

3

#	Article	IF	CITATIONS
37	<i>Update:</i> Affibody Molecules for Molecular Imaging and Therapy for Cancer. Cancer Biotherapy and Radiopharmaceuticals, 2007, 22, 573-584.	1.0	58
38	Affibody-mediated PET imaging of HER3 expression in malignant tumours. Scientific Reports, 2015, 5, 15226.	3.3	56
39	Affibody Molecules as Targeting Vectors for PET Imaging. Cancers, 2020, 12, 651.	3.7	56
40	The Effect of Mini-PEG-Based Spacer Length on Binding and Pharmacokinetic Properties of a 68Ga-Labeled NOTA-Conjugated Antagonistic Analog of Bombesin. Molecules, 2014, 19, 10455-10472.	3.8	55
41	ADAPT, a Novel Scaffold Protein-Based Probe for Radionuclide Imaging of Molecular Targets That Are Expressed in Disseminated Cancers. Cancer Research, 2015, 75, 4364-4371.	0.9	55
42	Influence of valency and labelling chemistry on in vivo targeting using radioiodinated HER2-binding Affibody molecules. European Journal of Nuclear Medicine and Molecular Imaging, 2009, 36, 692-701.	6.4	54
43	HAHAHA, HEHEHE, HIHIHI, or HKHKHK: Influence of Position and Composition of Histidine Containing Tags on Biodistribution of [^{99m} Tc(CO) ₃] ⁺ -Labeled Affibody Molecules. Journal of Medicinal Chemistry, 2013, 56, 4966-4974.	6.4	54
44	<i>In Vivo</i> Evaluation of Cysteine-Based Chelators for Attachment of ^{99m} Tc to Tumor-Targeting Affibody Molecules. Bioconjugate Chemistry, 2007, 18, 549-558.	3.6	53
45	Use of a HEHEHE Purification Tag Instead of a Hexahistidine Tag Improves Biodistribution of Affibody Molecules Site-Specifically Labeled with ^{99m} Tc, ¹¹¹ In, and ¹²⁵ I. Journal of Medicinal Chemistry, 2011, 54, 3817-3826.	6.4	53
46	Feasibility of Affibody Molecule-Based PNA-Mediated Radionuclide Pretargeting of Malignant Tumors. Theranostics, 2016, 6, 93-103.	10.0	53
47	Influence of Macrocyclic Chelators on the Targeting Properties of 68Ga-Labeled Synthetic Affibody Molecules: Comparison with 111In-Labeled Counterparts. PLoS ONE, 2013, 8, e70028.	2.5	50
48	Imaging of Platelet-Derived Growth Factor Receptor \hat{l}^2 Expression in Glioblastoma Xenografts Using Affibody Molecule $\langle \sup 111 \langle \sup In-DOTA-Z09591 \rangle$. Journal of Nuclear Medicine, 2014, 55, 294-300.	5.0	50
49	PET imaging of epidermal growth factor receptor expression in tumours using 89Zr-labelled ZEGFR:2377 affibody molecules. International Journal of Oncology, 2016, 48, 1325-1332.	3.3	50
50	Evaluation of ((4-Hydroxyphenyl)ethyl)maleimide for Site-Specific Radiobromination of Anti-HER2 Affibody. Bioconjugate Chemistry, 2005, 16, 1547-1555.	3.6	49
51	Quantification of internalization of EGFR-binding Affibody molecules: Methodological aspects. International Journal of Oncology, 2010, 36, 757-63.	3.3	49
52	Radionuclide Therapy of HER2-Expressing Human Xenografts Using Affibody-Based Peptide Nucleic Acid–Mediated Pretargeting: In Vivo Proof of Principle. Journal of Nuclear Medicine, 2018, 59, 1092-1098.	5.0	48
53	Optimal specific radioactivity of anti-HER2 Affibody molecules enables discrimination between xenografts with high and low HER2 expression levels. European Journal of Nuclear Medicine and Molecular Imaging, 2011, 38, 531-539.	6.4	46
54	The effect of macrocyclic chelators on the targeting properties of the 68 Ga-labeled gastrin releasing peptide receptor antagonist PEG 2 -RM26. Nuclear Medicine and Biology, 2015, 42, 446-454.	0.6	46

#	Article	IF	Citations
55	Feasibility of Affibody-Based Bioorthogonal Chemistry–Mediated Radionuclide Pretargeting. Journal of Nuclear Medicine, 2016, 57, 431-436.	5.0	46
56	Gallium-68-Labeled Affibody Molecule for PET Imaging of PDGFRÎ ² Expression in Vivo. Molecular Pharmaceutics, 2014, 11, 3957-3964.	4.6	45
57	Effects of Lysine-Containing Mercaptoacetyl-Based Chelators on the Biodistribution of ^{99m} Tc-Labeled Anti-HER2 Affibody Molecules. Bioconjugate Chemistry, 2008, 19, 2568-2576.	3.6	44
58	Imaging of Insulinlike Growth Factor Type 1 Receptor in Prostate Cancer Xenografts Using the Affibody Molecule ¹¹¹ In-DOTA-Z _{IGF1R:4551} . Journal of Nuclear Medicine, 2012, 53, 90-97.	5.0	44
59	In Vitro and In Vivo Evaluation of a 18F-Labeled High Affinity NOTA Conjugated Bombesin Antagonist as a PET Ligand for GRPR-Targeted Tumor Imaging. PLoS ONE, 2013, 8, e81932.	2.5	44
60	Design, synthesis and biological evaluation of a multifunctional HER2-specific Affibody molecule for molecular imaging. European Journal of Nuclear Medicine and Molecular Imaging, 2009, 36, 1864-1873.	6.4	43
61	Influence of Nuclides and Chelators on Imaging Using Affibody Molecules: Comparative Evaluation of Recombinant Affibody Molecules Site-Specifically Labeled with ⁶⁸ Ga and ¹¹¹ In via Maleimido Derivatives of DOTA and NODAGA. Bioconjugate Chemistry, 2013, 24, 1102-1109.	3.6	43
62	186Re-maSGS-ZHER2:342, a potential Affibody conjugate for systemic therapy of HER2-expressing tumours. European Journal of Nuclear Medicine and Molecular Imaging, 2010, 37, 260-269.	6.4	41
63	Phase I Study of ^{99m} Tc-ADAPT6, a Scaffold Protein–Based Probe for Visualization of HER2 Expression in Breast Cancer. Journal of Nuclear Medicine, 2021, 62, 493-499.	5.0	41
64	Approaches to Improve Cellular Retention of Radiohalogen Labels Delivered by Internalising Tumour-Targeting Proteins and Peptides. Current Medicinal Chemistry, 2003, 10, 2447-2460.	2.4	40
65	Comparative evaluation of synthetic anti-HER2 Affibody molecules site-specifically labelled with 111In using N-terminal DOTA, NOTA and NODAGA chelators in mice bearing prostate cancer xenografts. European Journal of Nuclear Medicine and Molecular Imaging, 2012, 39, 481-492.	6.4	40
66	Methods for Radiolabelling of Monoclonal Antibodies. Methods in Molecular Biology, 2014, 1060, 309-330.	0.9	40
67	Imaging of HER3-expressing xenografts in mice using a 99mTc(CO)3-HEHEHE-ZHER3:08699 affibody molecule. European Journal of Nuclear Medicine and Molecular Imaging, 2014, 41, 1450-1459.	6.4	40
68	Affibody-derived drug conjugates: Potent cytotoxic molecules for treatment of HER2 over-expressing tumors. Journal of Controlled Release, 2018, 288, 84-95.	9.9	40
69	[99mTc(CO)3]+-(HE)3-ZIGF1R:4551, a new Affibody conjugate for visualization of insulin-like growth factor-1 receptor expression in malignant tumours. European Journal of Nuclear Medicine and Molecular Imaging, 2013, 40, 439-449.	6.4	38
70	Influence of Histidine-Containing Tags on the Biodistribution of ADAPT Scaffold Proteins. Bioconjugate Chemistry, 2016, 27, 716-726.	3.6	38
71	Imaging using radiolabelled targeted proteins: radioimmunodetection and beyond. EJNMMI Radiopharmacy and Chemistry, 2020, 5, 16.	3.9	38
72	Cellular processing of 125I- and 111in-labeled epidermal growth factor (EGF) bound to cultured A431 tumor cells. Nuclear Medicine and Biology, 2000, 27, 827-835.	0.6	36

#	Article	IF	CITATIONS
73	Evaluation of a Maleimido Derivative of CHX-A′′ DTPA for Site-Specific Labeling of Affibody Molecules. Bioconjugate Chemistry, 2008, 19, 1579-1587.	3.6	35
74	Comparative Evaluation of Two DARPin Variants: Effect of Affinity, Size, and Label on Tumor Targeting Properties. Molecular Pharmaceutics, 2019, 16, 995-1008.	4.6	35
7 5	Closo-Dodecaborate(2-) as a Linker for Iodination of Macromolecules. Aspects on Conjugation Chemistry and Biodistribution. Bioconjugate Chemistry, 1999, 10, 338-345.	3.6	34
76	Influence of DOTA Chelator Position on Biodistribution and Targeting Properties of ¹¹¹ In-Labeled Synthetic Anti-HER2 Affibody Molecules. Bioconjugate Chemistry, 2012, 23, 1661-1670.	3.6	34
77	Optimal composition and position of histidine-containing tags improves biodistribution of 99mTc-labeled DARPin G3. Scientific Reports, 2019, 9, 9405.	3.3	34
78	Evaluation of the Radiocobalt-Labeled [MMA-DOTA-Cys61]-ZHER2:2395-Cys Affibody Molecule for Targeting of HER2-Expressing Tumors. Molecular Imaging and Biology, 2010, 12, 54-62.	2.6	33
79	Increasing the Net Negative Charge by Replacement of DOTA Chelator with DOTAGA Improves the Biodistribution of Radiolabeled Second-Generation Synthetic Affibody Molecules. Molecular Pharmaceutics, 2016, 13, 1668-1678.	4.6	33
80	Cyclic versus Noncyclic Chelating Scaffold for ⁸⁹ Zr-Labeled ZEGFR:2377 Affibody Bioconjugates Targeting Epidermal Growth Factor Receptor Overexpression. Molecular Pharmaceutics, 2018, 15, 175-185.	4.6	31
81	<i>In Vivo</i> and <i>In Vitro</i> Studies on Renal Uptake of Radiolabeled Affibody Molecules for Imaging of HER2 Expression in Tumors. Cancer Biotherapy and Radiopharmaceuticals, 2013, 28, 187-195.	1.0	30
82	Comparative evaluation of 111In-labeled NOTA-conjugated affibody molecules for visualization of HER3 expression in malignant tumors. Oncology Reports, 2015, 34, 1042-1048.	2.6	30
83	Comparative Evaluation of Affibody Molecules for Radionuclide Imaging of in Vivo Expression of Carbonic Anhydrase IX. Molecular Pharmaceutics, 2016, 13, 3676-3687.	4.6	30
84	Comparative Evaluation of Radioiodine and Technetium-Labeled DARPin 9_29 for Radionuclide Molecular Imaging of HER2 Expression in Malignant Tumors. Contrast Media and Molecular Imaging, 2018, 2018, 1-11.	0.8	30
85	Trastuzumab cotreatment improves survival of mice with PCâ€3 prostate cancer xenografts treated with the GRPR antagonist ¹⁷⁷ Luâ€ĐOTAGAâ€PEG ₂ â€RM26. International Journal of Cancer, 2019, 145, 3347-3358.	5.1	30
86	Selection of optimal chelator improves the contrast of GRPR imaging using bombesin analogue RM26. International Journal of Oncology, 2016, 48, 2124-2134.	3.3	29
87	The use of radiocobalt as a label improves imaging of EGFR using DOTA-conjugated Affibody molecule. Scientific Reports, 2017, 7, 5961.	3.3	29
88	Radionuclide Tumor Targeting Using ADAPT Scaffold Proteins: Aspects of Label Positioning and Residualizing Properties of the Label. Journal of Nuclear Medicine, 2018, 59, 93-99.	5.0	29
89	Phase I Trial of ^{99m} Tc-(HE) ₃ -G3, a DARPin-Based Probe for Imaging of HER2 Expression in Breast Cancer. Journal of Nuclear Medicine, 2022, 63, 528-535.	5.0	29
90	Comparative biodistribution of imaging agents for in vivo molecular profiling of disseminated prostate cancer in mice bearing prostate cancer xenografts: focus on 111In- and 125I-labeled anti-HER2 humanized monoclonal trastuzumab and ABY-025 Affibody. Nuclear Medicine and Biology, 2011, 38, 1093-1102.	0.6	28

#	Article	IF	CITATIONS
91	The influence of Bz-DOTA and CHX-A″-DTPA on the biodistribution of ABD-fused anti-HER2 Affibody molecules: implications for 114mIn-mediated targeting therapy. European Journal of Nuclear Medicine and Molecular Imaging, 2009, 36, 1460-1468.	6.4	27
92	Feasibility of imaging of epidermal growth factor receptor expression with ZEGFR:2377 affibody molecule labeled with 99mTc using a peptide-based cysteine-containing chelator. International Journal of Oncology, 2016, 49, 2285-2293.	3.3	27
93	High Contrast PET Imaging of GRPR Expression in Prostate Cancer Using Cobalt-Labeled Bombesin Antagonist RM26. Contrast Media and Molecular Imaging, 2017, 2017, 1-10.	0.8	27
94	The emerging role of radionuclide molecular imaging of HER2 expression in breast cancer. Seminars in Cancer Biology, 2021, 72, 185-197.	9.6	27
95	Combined effect of gefitinib ('Iressa', ZD1839) and targeted radiotherapy with 211 At-EGF. European Journal of Nuclear Medicine and Molecular Imaging, 2003, 30, 1348-1356.	6.4	26
96	Bispecific GRPR-Antagonistic Anti-PSMA/GRPR Heterodimer for PET and SPECT Diagnostic Imaging of Prostate Cancers, 2019, 11, 1371.	3.7	26
97	Labelling chemistry and characterization of [90Y/177Lu]-DOTA-ZHER2:342-3 Affibody molecule, a candidate agent for locoregional treatment of urinary bladder carcinoma. International Journal of Molecular Medicine, 2007, 19, 285-91.	4.0	26
98	Evaluation of a Maleimido Derivative of NOTA for Site-Specific Labeling of Affibody Molecules. Bioconjugate Chemistry, 2011, 22, 894-902.	3.6	25
99	Incorporation of a Triglutamyl Spacer Improves the Biodistribution of Synthetic Affibody Molecules Radiofluorinated at the N-Terminus via Oxime Formation with ¹⁸ F-4-Fluorobenzaldehyde. Bioconjugate Chemistry, 2014, 25, 82-92.	3.6	25
100	Radionuclide imaging of VEGFR2 in glioma vasculature using biparatopic affibody conjugate: proof-of-principle in a murine model. Theranostics, 2018, 8, 4462-4476.	10.0	25
101	Radiobromination of humanized anti-HER2 monoclonal antibody trastuzumab using N-succinimidyl 5-bromo-3-pyridinecarboxylate, a potential label for immunoPET. Nuclear Medicine and Biology, 2005, 32, 613-622.	0.6	24
102	Influence of molecular design on biodistribution and targeting properties of an Affibody-fused HER2-recognising anticancer toxin. International Journal of Oncology, 2016, 49, 1185-1194.	3.3	24
103	¹⁸⁸ Re-Z _{HER2:V2} , a Promising Affibody-Based Targeting Agent Against HER2-Expressing Tumors: Preclinical Assessment. Journal of Nuclear Medicine, 2014, 55, 1842-1848.	5.0	23
104	Optimized indirect 76br-bromination of antibodies using n-succinimidyl para-[76br]bromobenzoate for radioimmuno PET. Nuclear Medicine and Biology, 2000, 27, 837-843.	0.6	22
105	lmaging agents for in vivo molecular profiling of disseminated prostate cancer: Cellular processing of [111In]-labeled CHX-A″DTPA-trastuzumab and anti-HER2 ABY-025 Affibody in prostate cancer cell lines. Experimental and Therapeutic Medicine, 2011, 2, 523-528.	1.8	22
106	Evaluation of $99mTc$ -ZIGF1R: 4551 -GGGC affibody molecule, a new probe for imaging of insulin-like growth factor type 1 receptor expression. Amino Acids, 2015 , 47 , 303 - 315 .	2.7	22
107	Evaluation of HER2-specific peptide ligand for its employment as radiolabeled imaging probe. Scientific Reports, 2018, 8, 2998.	3.3	22
108	Evaluation of a HER2-targeting affibody molecule combining an N-terminal HEHEHE-tag with a GGGC chelator for 99mTc-labelling at the C terminus. Tumor Biology, 2012, 33, 641-651.	1.8	21

#	Article	IF	CITATIONS
109	Preclinical Evaluation of [68Ga]Ga-DFO-ZEGFR:2377: A Promising Affibody-Based Probe for Noninvasive PET Imaging of EGFR Expression in Tumors. Cells, 2018, 7, 141.	4.1	21
110	Selection of the optimal macrocyclic chelators for labeling with 111 In and 68 Ga improves contrast of HER2 imaging using engineered scaffold protein ADAPT6. European Journal of Pharmaceutics and Biopharmaceutics, 2019 , 140 , 109 - 120 .	4.3	21
111	Molecular Design of HER3-Targeting Affibody Molecules: Influence of Chelator and Presence of HEHEHE-Tag on Biodistribution of 68Ga-Labeled Tracers. International Journal of Molecular Sciences, 2019, 20, 1080.	4.1	21
112	Comparative evaluation of dimeric and monomeric forms of ADAPT scaffold protein for targeting of HER2-expressing tumours. European Journal of Pharmaceutics and Biopharmaceutics, 2019, 134, 37-48.	4.3	21
113	Pre-clinical evaluation of [111In]-benzyl-DOTA-Z(HER2:342), a potential agent for imaging of HER2 expression in malignant tumors. International Journal of Molecular Medicine, 2007, 20, 397-404.	4.0	21
114	Protein interactions with HER-family receptors can have different characteristics depending on the hosting cell line. International Journal of Oncology, 2011, 40, 1677-82.	3.3	20
115	In vivo evaluation of a novel format of a bivalent HER3-targeting and albumin-binding therapeutic affibody construct. Scientific Reports, 2017, 7, 43118.	3.3	20
116	Effect of a radiolabel biochemical nature on tumor-targeting properties of EpCAM-binding engineered scaffold protein DARPin Ec1. International Journal of Biological Macromolecules, 2020, 145, 216-225.	7. 5	20
117	Selection of an optimal cysteine-containing peptide-based chelator for labeling of affibody molecules with 188Re. European Journal of Medicinal Chemistry, 2014, 87, 519-528.	5.5	19
118	Influence of Molecular Design on the Targeting Properties of ABD-Fused Mono- and Bi-Valent Anti-HER3 Affibody Therapeutic Constructs. Cells, 2018, 7, 164.	4.1	19
119	Evaluation of the Therapeutic Potential of a HER3-Binding Affibody Construct TAM-HER3 in Comparison with a Monoclonal Antibody, Seribantumab. Molecular Pharmaceutics, 2018, 15, 3394-3403.	4.6	19
120	Site-specific conjugation of recognition tags to trastuzumab for peptide nucleic acid-mediated radionuclide HER2 pretargeting. Biomaterials, 2019, 203, 73-85.	11.4	19
121	Comparison of tumor‑targeting properties of directly and indirectly radioiodinated designed ankyrin repeat protein (DARPin) G3 variants for molecular imaging of HER2. International Journal of Oncology, 2019, 54, 1209-1220.	3.3	19
122	Heterodimeric Radiotracer Targeting PSMA and GRPR for Imaging of Prostate Cancer—Optimization of the Affinity towards PSMA by Linker Modification in Murine Model. Pharmaceutics, 2020, 12, 614.	4.5	19
123	Closo-dodecaborate (2-) anion as a potential prosthetic group for attachment of astatine to proteins. Aspects of the labelling chemistry with chloramine-T. Journal of Labelled Compounds and Radiopharmaceuticals, 2000, 43, 251-260.	1.0	18
124	Optimization of HER3 expression imaging using affibody molecules: Influence of chelator for labeling with indium-111. Scientific Reports, 2019, 9, 655.	3.3	18
125	Indirect Radioiodination of DARPin G3 Using N-succinimidyl-Para-Iodobenzoate Improves the Contrast of HER2 Molecular Imaging. International Journal of Molecular Sciences, 2019, 20, 3047.	4.1	18
126	PET and SPECT Imaging of the EGFR Family (RTK Class I) in Oncology. International Journal of Molecular Sciences, 2021, 22, 3663.	4.1	18

#	Article	IF	CITATIONS
127	Positioning of 99mTc-chelators influences radiolabeling, stability and biodistribution of Affibody molecules. Bioorganic and Medicinal Chemistry Letters, 2009, 19, 3912-3914.	2.2	17
128	Comparative evaluation of tumor targeting using the anti-HER2 ADAPT scaffold protein labeled at the C-terminus with indium-111 or technetium-99m. Scientific Reports, 2017, 7, 14780.	3.3	17
129	Synthesis and Preclinical Evaluation of Radio-lodinated GRPR/PSMA Bispecific Heterodimers for the Theranostics Application in Prostate Cancer. Pharmaceutics, 2019, 11, 358.	4.5	17
130	Feasibility of Imaging EpCAM Expression in Ovarian Cancer Using Radiolabeled DARPin Ec1. International Journal of Molecular Sciences, 2020, 21, 3310.	4.1	17
131	Histidine-Rich Glycoprotein Uptake and Turnover Is Mediated by Mononuclear Phagocytes. PLoS ONE, 2014, 9, e107483.	2.5	17
132	A method of drug delivery to tumors based on rapidly biodegradable drug-loaded containers. Applied Materials Today, 2021, 25, 101199.	4.3	17
133	[111In]Bz-DTPA-hEGF: Preparation andIn VitroCharacterization of a Potential Anti-Glioblastoma Targeting Agent. Cancer Biotherapy and Radiopharmaceuticals, 2003, 18, 643-654.	1.0	16
134	Order of amino acids in C-terminal cysteine-containing peptide-based chelators influences cellular processing and biodistribution of 99mTc-labeled recombinant Affibody molecules. Amino Acids, 2012, 42, 1975-1985.	2.7	16
135	Synthesis of ¹¹ C″abeled Sulfonyl Carbamates through a Multicomponent Reaction Employing Sulfonyl Azides, Alcohols, and [¹¹ C]CO. ChemistryOpen, 2016, 5, 566-573.	1.9	16
136	Influence of composition of cysteine-containing peptide-based chelators on biodistribution of 99mTc-labeled anti-EGFR affibody molecules. Amino Acids, 2018, 50, 981-994.	2.7	16
137	Drug Conjugates Based on a Monovalent Affibody Targeting Vector Can Efficiently Eradicate HER2 Positive Human Tumors in an Experimental Mouse Model. Cancers, 2021, 13, 85.	3.7	16
138	Preclinical evaluation of anti-HER2 Affibody molecules site-specifically labeled with 111In using a maleimido derivative of NODAGA. Nuclear Medicine and Biology, 2012, 39, 518-529.	0.6	15
139	Evaluation of backbone-cyclized HER2-binding 2-helix Affibody molecule for In Vivo molecular imaging. Nuclear Medicine and Biology, 2013, 40, 378-386.	0.6	15
140	Optimized Molecular Design of ADAPT-Based HER2-Imaging Probes Labeled with ¹¹¹ In and ⁶⁸ Ga. Molecular Pharmaceutics, 2018, 15, 2674-2683.	4.6	15
141	Comparative Biodistribution of the Radiohalogenated (Br, I and At) Antibody A33. Implications for In Vivo Dosimetry Cancer Biotherapy and Radiopharmaceuticals, 2002, 17, 385-396.	1.0	14
142	Labelling chemistry and characterization of [90Y/177Lu]-DOTA-ZHER2:342-3 Affibody molecule, a candidate agent for locoregional treatment of urinary bladder carcinoma. International Journal of Molecular Medicine, 2007, 19, 285.	4.0	14
143	Synthesis and chemoselective intramolecular crosslinking of a HER2â€binding affibody. Biopolymers, 2009, 92, 116-123.	2.4	14
144	Development of a 124I-labeled version of the anti-PSMA monoclonal antibody capromab for immunoPET staging of prostate cancer: Aspects of labeling chemistry and biodistribution. International Journal of Oncology, 2014, 44, 1998-2008.	3.3	14

#	Article	IF	CITATIONS
145	Comparative Evaluation of Anti-HER2 Affibody Molecules Labeled with ⁶⁴ Cu Using NOTA and NODAGA. Contrast Media and Molecular Imaging, 2017, 2017, 1-12.	0.8	14
146	Selection of an optimal macrocyclic chelator improves the imaging of prostate cancer using cobalt-labeled GRPR antagonist RM26. Scientific Reports, 2019, 9, 17086.	3.3	14
147	Comparative evaluation of affibody- and antibody fragments-based CAIX imaging probes in mice bearing renal cell carcinoma xenografts. Scientific Reports, 2019, 9, 14907.	3.3	14
148	Increase in negative charge of 68Ga/chelator complex reduces unspecific hepatic uptake but does not improve imaging properties of HER3-targeting affibody molecules. Scientific Reports, 2019, 9, 17710.	3.3	14
149	Preclinical Evaluation of 99mTc-ZHER2:41071, a Second-Generation Affibody-Based HER2-Visualizing Imaging Probe with a Low Renal Uptake. International Journal of Molecular Sciences, 2021, 22, 2770.	4.1	14
150	Radiolabeled Probes Targeting Tyrosine-Kinase Receptors For Personalized Medicine. Current Pharmaceutical Design, 2014, 20, 2275-2292.	1.9	14
151	Imaging agents for in vivo molecular profiling of disseminated prostate cancer - targeting EGFR receptors in prostate cancer: Comparison of cellular processing of [111In]-labeled affibody molecule ZEGFR:2377 and cetuximab. International Journal of Oncology, 2011, 38, 1137-43.	3.3	13
152	Influence of the N-Terminal Composition on Targeting Properties of Radiometal-Labeled Anti-HER2 Scaffold Protein ADAPT6. Bioconjugate Chemistry, 2016, 27, 2678-2688.	3.6	13
153	Molecular design of radiocopper-labelled Affibody molecules. Scientific Reports, 2018, 8, 6542.	3.3	13
154	The stromal microenvironment provides an escape route from FLT3 inhibitors through the GAS6-AXL-STAT5 axis. Haematologica, 2019, 104, 1907-1909.	3.5	13
155	Comparative Biodistribution of Potential Anti-Glioblastoma Conjugates [¹¹¹ In]DTPA-hEGF and [¹¹¹ In]Bz-DTPA-hEGF in Normal Mice. Cancer Biotherapy and Radiopharmaceuticals, 2004, 19, 491-501.	1.0	13
156	[177Lu]Bz-DTPA-EGF: Preclinical Characterization of a Potential Radionuclide Targeting Agent Against Glioma. Cancer Biotherapy and Radiopharmaceuticals, 2004, 19, 195-204.	1.0	12
157	Comparative Biodistribution of Potential Anti- Glioblastoma Conjugates [111In]DTPA-hEGF and [111In]Bz-DTPA-hEGF in Normal Mice. Cancer Biotherapy and Radiopharmaceuticals, 2004, 19, 491-502.	1.0	12
158	Position for Site-Specific Attachment of a DOTA Chelator to Synthetic Affibody Molecules Has a Different Influence on the Targeting Properties of ⁶⁸ Ga-Compared to ¹¹¹ In-Labeled Conjugates. Molecular Imaging, 2014, 13, 7290.2014.00034.	1.4	12
159	Site‧pecific Radioiodination of HER2â€Targeting Affibody Molecules using 4â€lodophenethylmaleimide Decreases Renal Uptake of Radioactivity. ChemistryOpen, 2015, 4, 174-182.	1.9	12
160	Incorporation of a Hydrophilic Spacer Reduces Hepatic Uptake of HER2-Targeting Affibody–DM1 Drug Conjugates. Cancers, 2019, 11, 1168.	3.7	12
161	Evaluation of an antibody-PNA conjugate as a clearing agent for antibody-based PNA-mediated radionuclide pretargeting. Scientific Reports, 2020, 10, 20777.	3.3	12
162	Comparative Evaluation of Novel 177Lu-Labeled PNA Probes for Affibody-Mediated PNA-Based Pretargeting. Cancers, 2021, 13, 500.	3.7	12

#	Article	IF	Citations
163	In Vitro Characterization of 211At-Labeled Antibody A33â€"a Potential Therapeutic Agent Against Metastatic Colorectal Carcinoma. Cancer Biotherapy and Radiopharmaceuticals, 2005, 20, 514-523.	1.0	11
164	Direct comparison of 111In-labelled two-helix and three-helix Affibody molecules for in vivo molecular imaging. European Journal of Nuclear Medicine and Molecular Imaging, 2012, 39, 693-702.	6.4	11
165	Detecting ligand interactions with G protein-coupled receptors in real-time on living cells. Biochemical and Biophysical Research Communications, 2013, 441, 820-824.	2.1	11
166	Development of an optimal imaging strategy for selection of patients for affibody-based PNA-mediated radionuclide therapy. Scientific Reports, 2018, 8, 9643.	3.3	11
167	Radionuclide Molecular Imaging of EpCAM Expression in Triple-Negative Breast Cancer Using the Scaffold Protein DARPin Ec1. Molecules, 2020, 25, 4719.	3.8	11
168	Radionuclide therapy using ABD-fused ADAPT scaffold protein: Proof of Principle. Biomaterials, 2021, 266, 120381.	11.4	11
169	Preparation and in vitro evaluation of $111 \mathrm{ln}$ -CHX-A"-DTPA-labeled anti-VEGF monoclonal antibody bevacizumab. Human Antibodies, 2010, 19, 107-111.	1.5	10
170	Evaluation of a radiocobalt-labelled affibody molecule for imaging of human epidermal growth factor receptor 3 expression. International Journal of Oncology, 2017, 51, 1765-1774.	3.3	10
171	Potent and specific fusion toxins consisting of a HER2‑binding, ABD‑derived affinity protein, fused to truncated versions of Pseudomonas exotoxin�A. International Journal of Oncology, 2019, 55, 309-319.	3.3	10
172	66Ga-PET-imaging of GRPR-expression in prostate cancer: production and characterization of [66Ga]Ga-NOTA-PEG2-RM26. Scientific Reports, 2021, 11, 3631.	3.3	10
173	The Use of a Non-Conventional Long-Lived Gallium Radioisotope 66Ga Improves Imaging Contrast of EGFR Expression in Malignant Tumours Using DFO-ZEGFR:2377 Affibody Molecule. Pharmaceutics, 2021, 13, 292.	4.5	10
174	[99mTc] HYNIC-hEGF, a potential agent for imaging of EGF receptors in vivo: preparation and pre-clinical evaluation. Oncology Reports, 2005, 13, 1169-75.	2.6	10
175	Radio-iodination of monoclonal antibody using potassium [125l]-(4-isothiocyanatobenzylammonio)-iodo-decahydro-closo-dodecaborate (iodo-DABI). Anticancer Research, 2006, 26, 1217-23.	1.1	10
176	Evaluating the Therapeutic Efficacy of Mono- and Bivalent Affibody-Based Fusion Proteins Targeting HER3 in a Pancreatic Cancer Xenograft Model. Pharmaceutics, 2020, 12, 551.	4.5	9
177	Benefit of Later-Time-Point PET Imaging of HER3 Expression Using Optimized Radiocobalt-Labeled Affibody Molecules. International Journal of Molecular Sciences, 2020, 21, 1972.	4.1	9
178	Radiolabeled GRPR Antagonists for Imaging of Disseminated Prostate Cancer - Influence of Labeling Chemistry on Targeting Properties. Current Medicinal Chemistry, 2020, 27, 7090-7111.	2.4	9
179	Affibody-Mediated PNA-Based Pretargeted Cotreatment Improves Survival of Trastuzumab-Treated Mice Bearing HER2-Expressing Xenografts. Journal of Nuclear Medicine, 2022, 63, 1046-1051.	5.0	9
180	Influence of an aliphatic linker between DOTA and synthetic ZHER2:342 Affibody molecule on targeting properties of the 111In-labeled conjugate. Nuclear Medicine and Biology, 2011, 38, 697-706.	0.6	8

#	Article	IF	Citations
181	In vitro modeling of HER2-targeting therapy in disseminated prostate cancer. International Journal of Oncology, 2014, 45, 2153-2158.	3.3	8
182	Improved contrast of affibody-mediated imaging of HER3 expression in mouse xenograft model through co-injection of a trivalent affibody for in vivo blocking of hepatic uptake. Scientific Reports, 2019, 9, 6779.	3.3	8
183	Preclinical Evaluation of the GRPR-Targeting Antagonist RM26 Conjugated to the Albumin-Binding Domain for GRPR-Targeting Therapy of Cancer. Pharmaceutics, 2020, 12, 977.	4.5	8
184	Affibody-Derived Drug Conjugates Targeting HER2: Effect of Drug Load on Cytotoxicity and Biodistribution. Pharmaceutics, 2021, 13, 430.	4.5	8
185	Imaging-Guided Therapy Simultaneously Targeting HER2 and EpCAM with Trastuzumab and EpCAM-Directed Toxin Provides Additive Effect in Ovarian Cancer Model. Cancers, 2021, 13, 3939.	3.7	8
186	Targeting against epidermal growth factor receptors. Cellular processing of astatinated EGF after binding to cultured carcinoma cells. Anticancer Research, 2004, 24, 4035-41.	1.1	8
187	Comparison of benzoate- and dodecaborate-based linkers for attachment of radioiodine to HER2-targeting Affibody ligand. International Journal of Molecular Medicine, 2007, 19, 485-93.	4.0	8
188	Design, Synthesis, and Evaluation of Linker-Optimised PSMA-Targeting Radioligands. Pharmaceutics, 2022, 14, 1098.	4.5	8
189	Influence of Residualizing Properties of the Radiolabel on Radionuclide Molecular Imaging of HER3 Using Affibody Molecules. International Journal of Molecular Sciences, 2020, 21, 1312.	4.1	7
190	HER2-Specific Pseudomonas Exotoxin A PE25 Based Fusions: Influence of Targeting Domain on Target Binding, Toxicity, and In Vivo Biodistribution. Pharmaceutics, 2020, 12, 391.	4.5	7
191	Preclinical Evaluation of 99mTc-Labeled GRPR Antagonists maSSS/SES-PEG2-RM26 for Imaging of Prostate Cancer. Pharmaceutics, 2021, 13, 182.	4.5	7
192	Influence of the Position and Composition of Radiometals and Radioiodine Labels on Imaging of Epcam Expression in Prostate Cancer Model Using the DARPin Ec1. Cancers, 2021, 13, 3589.	3.7	7
193	Targeting of a Head and Neck Squamous Cell Carcinoma Xenograft Model Using the Chimeric Monoclonal Antibody U36 Radioiodinated with a closo-Dodecaborate-containing Linker. Acta Oto-Laryngologica, 2004, 124, 1078-1085.	0.9	6
194	Imaging of HER2 may improve the outcome of external irradiation therapy for prostate cancer patients. Oncology Letters, 2015, 9, 950-954.	1.8	6
195	Evaluation of Tumor-Targeting Properties of an Antagonistic Bombesin Analogue RM26 Conjugated with a Non-Residualizing Radioiodine Label Comparison with a Radiometal-Labelled Counterpart. Pharmaceutics, 2019, 11, 380.	4.5	6
196	Preclinical Evaluation of the Copper-64 Labeled GRPR-Antagonist RM26 in Comparison with the Cobalt-55 Labeled Counterpart for PET-Imaging of Prostate Cancer. Molecules, 2020, 25, 5993.	3.8	6
197	Possibilities of radionuclide diagnostics of Her2-positive breast cancer using technetium-99m-labeled target molecules: the first experience of clinical use. Bulletin of Siberian Medicine, 2021, 20, 23-30.	0.3	6
198	HER3 PET Imaging: 68Ga-Labeled Affibody Molecules Provide Superior HER3 Contrast to 89Zr-Labeled Antibody and Antibody-Fragment-Based Tracers. Cancers, 2021, 13, 4791.	3.7	6

#	Article	IF	Citations
199	Comparison of benzoate- and dodecaborate-based linkers for attachment of radioiodine to HER2-targeting Affibody ligand. International Journal of Molecular Medicine, 0, , .	4.0	6
200	The Influence of Domain Permutations of an Albumin-Binding Domain-Fused HER2-Targeting Affibody-Based Drug Conjugate on Tumor Cell Proliferation and Therapy Efficacy. Pharmaceutics, 2021, 13, 1974.	4 . 5	6
201	Title is missing!. Journal of Radioanalytical and Nuclear Chemistry, 2000, 246, 207-213.	1.5	5
202	Title is missing!. Journal of Radioanalytical and Nuclear Chemistry, 2003, 256, 67-71.	1.5	5
203	Copper-mediated isotopic exchange between [125I]iodide and bis(triethylammonium) undecahydro-12-iodo-closo-dodecaborate in aqueous media. Journal of Radioanalytical and Nuclear Chemistry, 2004, 260, 295-299.	1.5	5
204	Synthesis and Radioiodination of Some 9-Aminoacridine Derivatives. European Journal of Organic Chemistry, 2004, 2004, 3719-3725.	2.4	5
205	Increasing thermal stability and improving biodistribution of VEGFR2-binding affibody molecules by a combination of in silico and directed evolution approaches. Scientific Reports, 2020, 10, 18148.	3.3	5
206	Comparative Preclinical Evaluation of HER2-Targeting ABD-Fused Affibody® Molecules 177Lu-ABY-271 and 177Lu-ABY-027: Impact of DOTA Position on ABD Domain. Pharmaceutics, 2021, 13, 839.	4. 5	5
207	Experimental Therapy of HER2-Expressing Xenografts Using the Second-Generation HER2-Targeting Affibody Molecule 188Re-ZHER2:41071. Pharmaceutics, 2022, 14, 1092.	4.5	5
208	Comparing the measured affinity of 111In-labeled ligands for cellular receptors by monitoring gamma, beta, or X-ray radiation with three different LigandTracer® devices. Journal of Radioanalytical and Nuclear Chemistry, 2015, 304, 823-828.	1.5	4
209	Affibody‑mediated imaging of EGFR expression in prostate cancer using radiocobalt‑labeled DOTA‑ZEGFR:2377. Oncology Reports, 2018, 41, 534-542.	2.6	4
210	Targeting HER2 Expressing Tumors with a Potent Drug Conjugate Based on an Albumin Binding Domain-Derived Affinity Protein. Pharmaceutics, 2021, 13, 1847.	4.5	4
211	Preclinical Evaluation of a New Format of 68Ga- and 111In-Labeled Affibody Molecule ZIGF-1R:4551 for the Visualization of IGF-1R Expression in Malignant Tumors Using PET and SPECT. Pharmaceutics, 2022, 14, 1475.	4.5	4
212	Preparation of [76Br] 5-bromo-2-thiouracil, a positron-emitting melanoma localizing agent. Journal of Radioanalytical and Nuclear Chemistry, 2002, 251, 409-412.	1.5	2
213	Radioiodination of ammonio-closo-monocarborane, 1-H3N-1-CB11H11. Aspects of labelling chemistry in aqueous solution using Chloramine-T. Radiochimica Acta, 2004, 92, 311-315.	1.2	2
214	[99mTc] HYNIC-hEGF, a potential agent for imaging of EGF receptors in vivo: Preparation and pre-clinical evaluation. Oncology Reports, 0, , .	2.6	2
215	Cellular processing in the SW1222 cell line of mAb A33 directly and indirectly radiohalogenated. Oncology Reports, 0, , .	2.6	2
216	Effect of Inter-Domain Linker Composition on Biodistribution of ABD-Fused Affibody-Drug Conjugates Targeting HER2. Pharmaceutics, 2022, 14, 522.	4.5	2

Anna Orlova

#	Article	IF	CITATION
217	Targeting Tumor Cells Overexpressing the Human Epidermal Growth Factor Receptor 3 with Potent Drug Conjugates Based on Affibody Molecules. Biomedicines, 2022, 10, 1293.	3.2	2
218	Efficacy and Synergy of Small Molecule Inhibitors Targeting FLT3-ITD+ Acute Myeloid Leukemia. Cancers, 2021, 13, 6181.	3.7	1
219	An aminoacridine derivative for radionuclide therapy: DNA binding properties studied in a novel cell-free in vitro assay. International Journal of Oncology, 2005, 27, 1355.	3.3	O