Seyedmojtaba Seyedmousavi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5360532/publications.pdf

Version: 2024-02-01

109 papers 24,573 citations

101384 36 h-index 28224 105 g-index

112 all docs

112 docs citations

times ranked

112

39223 citing authors

#	Article	IF	CITATIONS
1	Global, regional, and national incidence, prevalence, and years lived with disability for 354 diseases and injuries for 195 countries and territories, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet, The, 2018, 392, 1789-1858.	6.3	8,569
2	Global, regional, and national age-sex-specific mortality for 282 causes of death in 195 countries and territories, 1980–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet, The, 2018, 392, 1736-1788.	6.3	4,989
3	Global, regional, and national comparative risk assessment of 84 behavioural, environmental and occupational, and metabolic risks or clusters of risks for 195 countries and territories, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet, The, 2018, 392, 1923-1994.	6.3	3,269
4	Global, regional, and national disability-adjusted life-years (DALYs) for 359 diseases and injuries and healthy life expectancy (HALE) for 195 countries and territories, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet, The, 2018, 392, 1859-1922.	6.3	2,123
5	Global guideline for the diagnosis and management of mucormycosis: an initiative of the European Confederation of Medical Mycology in cooperation with the Mycoses Study Group Education and Research Consortium. Lancet Infectious Diseases, The, 2019, 19, e405-e421.	4.6	970
6	Global, regional, and national incidence, prevalence, and mortality of HIV, 1980–2017, and forecasts to 2030, for 195 countries and territories: a systematic analysis for the Global Burden of Diseases, Injuries, and Risk Factors Study 2017. Lancet HIV,the, 2019, 6, e831-e859.	2.1	341
7	Measuring progress from 1990 to 2017 and projecting attainment to 2030 of the health-related Sustainable Development Goals for 195 countries and territories: a systematic analysis for the Global Burden of Disease Study 2017. Lancet, The, 2018, 392, 2091-2138.	6.3	335
8	Mortality, morbidity, and hospitalisations due to influenza lower respiratory tract infections, 2017: an analysis for the Global Burden of Disease Study 2017. Lancet Respiratory Medicine, the, 2019, 7, 69-89.	5. 2	326
9	International expert opinion on the management of infection caused by azole-resistant Aspergillus fumigatus. Drug Resistance Updates, 2015, 21-22, 30-40.	6.5	262
10	The global burden of childhood and adolescent cancer in 2017: an analysis of the Global Burden of Disease Study 2017. Lancet Oncology, The, 2019, 20, 1211-1225.	5.1	199
11	Waterborne <i>Exophiala (i) species causing disease in cold-blooded animals. Persoonia: Molecular Phylogeny and Evolution of Fungi, 2011, 27, 46-72.</i>	1.6	191
12	<i>Aspergillus</i> and aspergilloses in wild and domestic animals: a global health concern with parallels to human disease. Medical Mycology, 2015, 53, 765-797.	0.3	172
13	Mapping 123 million neonatal, infant and child deaths between 2000 and 2017. Nature, 2019, 574, 353-358.	13.7	161
14	Global, regional, and national burden of tuberculosis, 1990–2016: results from the Global Burden of Diseases, Injuries, and Risk Factors 2016 Study. Lancet Infectious Diseases, The, 2018, 18, 1329-1349.	4.6	144
15	Fungal infections in animals: a patchwork of different situations. Medical Mycology, 2018, 56, S165-S187.	0.3	141
16	Quantifying risks and interventions that have affected the burden of diarrhoea among children younger than 5 years: an analysis of the Global Burden of Disease Study 2017. Lancet Infectious Diseases, The, 2020, 20, 37-59.	4.6	104
17	Quantifying risks and interventions that have affected the burden of lower respiratory infections among children younger than 5 years: an analysis for the Global Burden of Disease Study 2017. Lancet Infectious Diseases, The, 2020, 20, 60-79.	4.6	95
18	Black Yeasts and Their Filamentous Relatives: Principles of Pathogenesis and Host Defense. Clinical Microbiology Reviews, 2014, 27, 527-542.	5.7	94

#	Article	IF	CITATIONS
19	The role of azoles in the management of azole-resistant aspergillosis: From the bench to the bedside. Drug Resistance Updates, 2014, 17, 37-50.	6.5	89
20	Pharmacodynamics of Ceftazidime and Avibactam in Neutropenic Mice with Thigh or Lung Infection. Antimicrobial Agents and Chemotherapy, 2016, 60, 368-375.	1.4	87
21	Phaeohyphomycoses, Emerging Opportunistic Diseases in Animals. Clinical Microbiology Reviews, 2013, 26, 19-35.	5.7	76
22	Exophiala sideris, a novel black yeast isolated from environments polluted with toxic alkyl benzenes and arsenic. Fungal Biology, 2011, 115, 1030-1037.	1.1	72
23	Discrimination of Aspergillosis, Mucormycosis, Fusariosis, and Scedosporiosis in Formalin-Fixed Paraffin-Embedded Tissue Specimens by Use of Multiple Real-Time Quantitative PCR Assays. Journal of Clinical Microbiology, 2016, 54, 2798-2803.	1.8	68
24	Molecular Characterization and In Vitro Antifungal Susceptibility of 316 Clinical Isolates of Dermatophytes in Iran. Mycopathologia, 2016, 181, 89-95.	1.3	67
25	Therapeutic drug monitoring of voriconazole and posaconazole for invasive aspergillosis. Expert Review of Anti-Infective Therapy, 2013, 11, 931-941.	2.0	65
26	Efficacy and pharmacodynamics of voriconazole combined with anidulafungin in azole-resistant invasive aspergillosis. Journal of Antimicrobial Chemotherapy, 2013, 68, 385-393.	1.3	60
27	Pharmacodynamics of Isavuconazole in an Aspergillus fumigatus Mouse Infection Model. Antimicrobial Agents and Chemotherapy, 2015, 59, 2855-2866.	1.4	60
28	Azole-Resistant <i>Aspergillus fumigatus</i> , Iran. Emerging Infectious Diseases, 2013, 19, 832-834.	2.0	58
29	Neglected fungal zoonoses: hidden threats to man and animals. Clinical Microbiology and Infection, 2015, 21, 416-425.	2.8	54
30	Epidemiological changes in tinea capitis over the sixty years of economic growth in China. Medical Mycology, 2015, 53, 691-698.	0.3	50
31	Overview of selected virulence attributes in Aspergillus fumigatus, Candida albicans, Cryptococcus neoformans, Trichophyton rubrum, and Exophiala dermatitidis. Fungal Genetics and Biology, 2018, 111, 92-107.	0.9	48
32	Pharmacokinetics and Penetration of Ceftazidime and Avibactam into Epithelial Lining Fluid in Thighand Lung-Infected Mice. Antimicrobial Agents and Chemotherapy, 2015, 59, 2299-2304.	1.4	43
33	Systemic Antifungal Agents: Current Status and Projected Future Developments. Methods in Molecular Biology, 2017, 1508, 107-139.	0.4	42
34	Pharmacodynamics and Dose-Response Relationships of Liposomal Amphotericin B against Different Azole-Resistant Aspergillus fumigatus Isolates in a Murine Model of Disseminated Aspergillosis. Antimicrobial Agents and Chemotherapy, 2013, 57, 1866-1871.	1.4	38
35	Recognition of Diagnostic Gaps for Laboratory Diagnosis of Fungal Diseases: Expert Opinion from the Fungal Diagnostics Laboratories Consortium (FDLC). Journal of Clinical Microbiology, 2021, 59, e0178420.	1.8	38
36	Isavuconazole, a broad-spectrum triazole for the treatment of systemic fungal diseases. Expert Review of Anti-Infective Therapy, 2015, 13, 9-27.	2.0	37

#	Article	IF	CITATIONS
37	Efficacy of Olorofim (F901318) against <i>Aspergillus fumigatus</i> , <i>A. nidulans</i> , and <i>A. tanneri</i> in Murine Models of Profound Neutropenia and Chronic Granulomatous Disease. Antimicrobial Agents and Chemotherapy, 2019, 63, .	1.4	37
38	Emergence of fusarioses in a university hospital in Turkey during a 20-year period. European Journal of Clinical Microbiology and Infectious Diseases, 2015, 34, 1683-1691.	1.3	36
39	Genotyping and In Vitro Antifungal Susceptibility Testing of Fusarium Isolates from Onychomycosis in India. Mycopathologia, 2016, 181, 497-504.	1.3	36
40	<i>In Vitro</i> Interaction of Voriconazole and Anidulafungin against Triazole-Resistant Aspergillus fumigatus. Antimicrobial Agents and Chemotherapy, 2013, 57, 796-803.	1.4	35
41	Predominance of non-fumigatus Aspergillus species among patients suspected to pulmonary aspergillosis in a tropical and subtropical region of the Middle East. Microbial Pathogenesis, 2018, 116, 296-300.	1.3	35
42	Biofilm Formation and Resistance to Fungicides in Clinically Relevant Members of the Fungal Genus Fusarium. Journal of Fungi (Basel, Switzerland), 2018, 4, 16.	1.5	32
43	Genetic Diversity and In Vitro Antifungal Susceptibility of 200 Clinical and Environmental Aspergillus flavus Isolates. Antimicrobial Agents and Chemotherapy, 2017, 61, .	1.4	31
44	Emerging Aspergillus Species Almost Exclusively Associated With Primary Immunodeficiencies. Open Forum Infectious Diseases, 2018, 5, ofy213.	0.4	28
45	Effect of involved Aspergillus species on galactomannan in bronchoalveolar lavage of patients with invasive aspergillosis. Journal of Medical Microbiology, 2017, 66, 898-904.	0.7	27
46	Antifungal Susceptibility Patterns of Opportunistic Fungi in the Genera Verruconis and Ochroconis. Antimicrobial Agents and Chemotherapy, 2014, 58, 3285-3292.	1.4	26
47	Quantitative Analysis of Single-Nucleotide Polymorphism for Rapid Detection of TR ₃₄ /L98H- and TR ₄₆ /Y121F/T289A-Positive Aspergillus fumigatus Isolates Obtained from Patients in Iran from 2010 to 2014. Antimicrobial Agents and Chemotherapy, 2016, 60, 387-392.	1.4	23
48	Posaconazole Prophylaxis in Experimental Azole-Resistant Invasive Pulmonary Aspergillosis. Antimicrobial Agents and Chemotherapy, 2015, 59, 1487-1494.	1.4	22
49	Topical and systemic antifungals in dermatology practice. Expert Review of Clinical Pharmacology, 2017, 10, 225-237.	1.3	22
50	Multiple subcutaneous cysts due to <i>Exophiala spinifera</i> in an immunocompetent patient. Medical Mycology, 2012, 50, 207-213.	0.3	20
51	Effects of Low-Level Laser Irradiation on the Pathogenicity of <i>Candida albicans </i> In Vitro and in Vivo Study. Photomedicine and Laser Surgery, 2014, 32, 322-329.	2.1	20
52	Combination of Amphotericin B and Flucytosine against Neurotropic Species of Melanized Fungi Causing Primary Cerebral Phaeohyphomycosis. Antimicrobial Agents and Chemotherapy, 2016, 60, 2346-2351.	1.4	20
53	Successful treatment of azole-resistant invasive aspergillosis in a bottlenose dolphin with high-dose posaconazole. Medical Mycology Case Reports, 2017, 16, 16-19.	0.7	20
54	Aspergillus fumigatus alkaline protease 1 (Alp1/Asp f13) in the airways correlates with asthma severity. Journal of Allergy and Clinical Immunology, 2018, 141, 423-425.e7.	1.5	19

#	Article	IF	Citations
55	Fungal epidemiology in cystic fibrosis patients with a special focus on Scedosporium species complex. Microbial Pathogenesis, 2019, 129, 168-175.	1.3	19
56	Burden of fungal infections in Iran. Journal of Infection in Developing Countries, 2018, 12, 910-918.	0.5	19
57	Plasma and Epithelial Lining Fluid Pharmacokinetics of Ceftolozane and Tazobactam Alone and in Combination in Mice. Antimicrobial Agents and Chemotherapy, 2015, 59, 3373-3376.	1.4	18
58	Pharmacodynamics of Voriconazole against Wild-Type and Azole-Resistant Aspergillus flavus Isolates in a Nonneutropenic Murine Model of Disseminated Aspergillosis. Antimicrobial Agents and Chemotherapy, 2017, 61, .	1.4	18
59	Dermatophytosis due to Microsporum incurvatum: Notification and Identification of a Neglected Pathogenic Species. Mycopathologia, 2016, 181, 107-113.	1.3	17
60	<i>In Vitro</i> Antifungal Susceptibility Profiles of 12 Antifungal Drugs against 55 Trichophyton schoenleinii Isolates from Tinea Capitis Favosa Patients in Iran, Turkey, and China. Antimicrobial Agents and Chemotherapy, 2017, 61, .	1.4	17
61	<i>In Vivo</i> Efficacy of Olorofim against Systemic Scedosporiosis and Lomentosporiosis. Antimicrobial Agents and Chemotherapy, 2021, 65, e0043421.	1.4	17
62	Assessment of efficacy of antifungals in experimental models of invasive aspergillosis in an era of emerging resistance: the value of real-time quantitative PCR. Current Opinion in Pharmacology, 2011, 11, 486-493.	1.7	16
63	Pharmacodynamics of Anidulafungin against Clinical Aspergillus fumigatus Isolates in a Nonneutropenic Murine Model of Disseminated Aspergillosis. Antimicrobial Agents and Chemotherapy, 2013, 57, 303-308.	1.4	16
64	Aspergillus flavus Keratitis: Experience of a Tertiary Eye Clinic in Turkey. Mycopathologia, 2017, 182, 379-385.	1.3	16
65	In-vitro antifungal susceptibility testing of lanoconazole and luliconazole against Aspergillus flavus as an important agent ofÂinvasive aspergillosis. Journal of Infection and Chemotherapy, 2019, 25, 157-160.	0.8	16
66	Genetic diversity and antifungal susceptibility patterns of <i>Aspergillus nidulans</i> complex obtained from clinical and environmental sources. Mycoses, 2020, 63, 78-88.	1.8	16
67	Discrimination of <i>Aspergillus flavus</i> from <i>Aspergillus oryzae</i> by matrixâ€assisted laser desorption/ionisation timeâ€ofâ€flight (MALDIâ€₹OF) mass spectrometry. Mycoses, 2019, 62, 1182-1188.	1.8	15
68	Antifungal Susceptibility Profiles of Olorofim (Formerly F901318) and Currently Available Systemic Antifungals against Mold and Yeast Phases of $\langle i \rangle$ Talaromyces marneffei $\langle i \rangle$. Antimicrobial Agents and Chemotherapy, 2021, 65, .	1.4	15
69	Comparison of theln VitroActivities of Newer Triazoles and Established Antifungal Agents against Trichophyton rubrum. Antimicrobial Agents and Chemotherapy, 2015, 59, 4312-4314.	1.4	14
70	Time-Kill Kinetics and In Vitro Antifungal Susceptibility of Non-fumigatus Aspergillus Species Isolated from Patients with Ocular Mycoses. Mycopathologia, 2016, 181, 225-233.	1.3	14
71	Exogenous Stimulation of Type I Interferon Protects Mice with Chronic Granulomatous Disease from Aspergillosis through Early Recruitment of Host-Protective Neutrophils into the Lung. MBio, 2018, 9, .	1.8	14
72	Intrapulmonary Posaconazole Penetration at the Infection Site in an Immunosuppressed Murine Model of Invasive Pulmonary Aspergillosis Receiving Oral Prophylactic Regimens. Antimicrobial Agents and Chemotherapy, 2014, 58, 2964-2967.	1.4	13

#	Article	lF	Citations
73	Virulence Attributes and Antifungal Susceptibility Profile of Opportunistic Fungi Isolated from Ophthalmic Infections. Mycopathologia, 2016, 181, 653-661.	1.3	13
74	Estimated burden of serious human fungal diseases in Turkey. Mycoses, 2019, 62, 22-31.	1.8	13
75	Antifungal Susceptibility Profile of Candida Albicans Isolated from Vulvovaginal Candidiasis in Xinjiang Province of China. Mycopathologia, 2019, 184, 413-422.	1.3	13
76	Molecular epidemiology and antifungal susceptibility profiles of clinical Cryptococcus neoformans/Cryptococcus gattii species complex. Journal of Medical Microbiology, 2020, 69, 72-81.	0.7	13
77	Identification of clinical dermatophyte isolates obtained from Iran by matrix-assisted laser desorption/ionization time-offlight mass spectrometry. Current Medical Mycology, 2019, 5, 22-26.	0.8	13
78	Differentiation of Aspergillus flavus from Aspergillus oryzae Targeting the cyp51A Gene. Pathogens, 2021, 10, 1279.	1,2	13
79	Cryptococcus neoformans Recovered From Olive Trees (Olea europaea) in Turkey Reveal Allopatry With African and South American Lineages. Frontiers in Cellular and Infection Microbiology, 2019, 9, 384.	1.8	12
80	Combination of Amphotericin B and Terbinafine against Melanized Fungi Associated with Chromoblastomycosis. Antimicrobial Agents and Chemotherapy, 2018, 62, .	1.4	11
81	<i>In vitro</i> antifungal susceptibility of <i>Trichophyton violaceum</i> isolated from tinea capitis patients. Journal of Antimicrobial Chemotherapy, 2015, 70, 1072-1075.	1.3	10
82	Conventional Morphology Versus PCR Sequencing, repâ€PCR, and MALDIâ€TOFâ€MS for Identification of Clinical <i>Aspergillus</i> Isolates Collected Over a 2â€Year Period in a University Hospital at Kayseri, Turkey. Journal of Clinical Laboratory Analysis, 2016, 30, 745-750.	0.9	9
83	Cryptococcosis: Emergence of Cryptococcus gattii in Animals and Zoonotic Potential. , 2018, , 249-287.		9
84	National trends in incidence, prevalence and disability-adjusted life years of invasive aspergillosis in Iran: a systematic review and meta-analysis. Expert Review of Respiratory Medicine, 2019, 13, 1121-1134.	1.0	9
85	Recent Advances in Genome Editing Tools in Medical Mycology Research. Journal of Fungi (Basel,) Tj ETQq1 10.7	784314 rg 1.5	gBTJOverlock
86	ATR-FTIR Spectroscopy Highlights the Problem of Distinguishing Between Exophiala dermatitidis and E. phaeomuriformis Using MALDI-TOF MS. Microbial Ecology, 2016, 71, 339-346.	1.4	8
87	MGL _3741 gene contributes to pathogenicity of Malassezia globosa in pityriasis versicolor. Mycoses, 2018, 61, 938-944.	1.8	8
88	Fungal rhino sinusitisin in tehran, iran. Iranian Journal of Public Health, 2015, 44, 374-9.	0.3	8
89	Isolation and Characterization of Clinical Triazole Resistance in Iran. Iranian Journal of Public Health, 2018, 47, 994-1000.	0.3	8
90	Infrequent Production of Xanthomegnin by Fungal Strains Recovered from Patients with Ocular Mycoses. Mycopathologia, 2016, 181, 241-246.	1.3	7

#	Article	IF	Citations
91	Genetic Diversity and Antifungal Susceptibility of Candida parapsilosis Sensu Stricto Isolated from Bloodstream Infections in Turkish Patients. Mycopathologia, 2018, 183, 701-708.	1.3	7
92	Genetic diversity and antifungal susceptibility of Candida albicans isolated from Iranian patients. Medical Mycology, 2019, 57, 127-131.	0.3	7
93	Diagnosis of allergic bronchopulmonary aspergillosis in patients with persistent allergic asthma using three different diagnostic algorithms. Mycoses, 2021, 64, 272-281.	1.8	7
94	A 9-Month-Old Girl from Iran with Extensive Erythematous Plaques Due to Trichophyton simii, a Zoophilic Dermatophyte. Mycopathologia, 2016, 181, 451-455.	1.3	6
95	Antifungal Use in Veterinary Practice and Emergence of Resistance. , 2018, , 359-402.		6
96	<i>In Vivo</i> Efficacy of Liposomal Amphotericin B against Wild-Type and Azole-Resistant Aspergillus fumigatus Isolates in Two Different Immunosuppression Models of Invasive Aspergillosis. Antimicrobial Agents and Chemotherapy, 2017, 61, .	1.4	5
97	Azole Resistance in Aspergillus fumigatus: Mechanisms, Route of Resistance Selection, and Clinical Implications., 2017,, 403-421.		5
98	Clinical and Laboratory Features of Six Cases of Candida and Dermatophyte Folliculitis and a Review of Published Studies. Mycopathologia, 2016, 181, 97-105.	1.3	4
99	Continuous Infusion of Amphotericin B Deoxycholate for the Treatment of Life-Threatening <i>Candida</i> Infections. American Journal of Respiratory and Critical Care Medicine, 2013, 188, 1033-1033.	2.5	2
100	Defective calcineurin/NFAT signaling in myeloid cells and susceptibility to aspergillosis in post-transplant patients. Virulence, 2017, 8, 1498-1501.	1.8	2
101	Annotated Genome Sequence of <i>Aspergillus tanneri</i> NIH1004. Microbiology Resource Announcements, 2020, 9, .	0.3	2
102	Cutaneous hyalohyphomycosis due to Petriella setifera following traumatic inoculation in an immunocompetent host. Medical Mycology Case Reports, 2021, 32, 56-60.	0.7	2
103	Azole Resistance in Aspergillus fumigatus: Mechanisms, Route of Resistance Selection, and Clinical Implications., 2015,, 1-17.		2
104	Development of RFLP method for rapid differentiation of Aspergillus flavus and Aspergillus oryzae, two species with high importance in clinical and food microbiology. Journal De Mycologie Medicale, 2022, 32, 101274.	0.7	2
105	Absent inÂvitro interaction between chloroquine and antifungals against Aspergillus fumigatus. Clinical Microbiology and Infection, 2017, 23, 679-681.	2.8	1
106	Ochroconis globalisinfecting Atlantic salmon (Salmo salar), with a review ofOchroconisspecies in coldâ€blooded animals. Journal of Fish Diseases, 2019, 42, 947-957.	0.9	1
107	Multicenter Cryptococcal Antigen Screening of HIV-Infected Patients in Iran. Current Microbiology, 2020, 77, 1667-1672.	1.0	1
108	Genotyping and In Vitro Antifungal Susceptibility Profile of Neoscytalidium Species Isolates from Respiratory Tract. Mycopathologia, 2021, 186, 833-845.	1.3	1

ARTICLE IF CITATIONS

109 Aspergillosis in Humans and Animals., 2019,, 81-98. 1