Olga N Tchaikovskaya

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5360458/publications.pdf

Version: 2024-02-01

83 322 papers citations

9 h-index 1199594 12 g-index

83 all docs

83 docs citations

83 times ranked 260 citing authors

#	Article	IF	CITATIONS
1	Fluorescence and bioluminescence analysis of sequential UV-biological degradation ofp-cresol in water. Luminescence, 2007, 22, 29-34.	2.9	20
2	The phototransformation of 4-chloro-2-methylphenoxyacetic acid under KrCl and XeBr excilamps irradiation in water. Journal of Photochemistry and Photobiology A: Chemistry, 2012, 228, 8-14.	3.9	17
3	Investigation of bactericide systems using a microfiber polypropylene carrier. Technical Physics, 2015, 60, 592-594.	0.7	13
4	Fluorescence Investigations of Phenol Phototransformation in Aqueous Solutions. Journal of Fluorescence, 2000, 10, 403-408.	2.5	12
5	Triplet states of humic acids studied by laser flash photolysis using different excitation wavelengths. Russian Chemical Bulletin, 2004, 53, 313-317.	1.5	12
6	Fluorescence analysis of photoinduced degradation of ecotoxicants in the presence of humic acids. Luminescence, 2005, 20, 187-191.	2.9	12
7	Effect of humic acids on phototransformation of methylphenols in water. Journal of Applied Spectroscopy, 2008, 75, 597-602.	0.7	10
8	Theoretical study of bisphenol A photolysis. Advances in Quantum Chemistry, 2020, 81, 191-217.	0.8	10
9	Excitation energy effect on the early photophysics of hypericin in solution. Chemical Physics Letters, 2005, 408, 96-100.	2.6	9
10	Choice of Parameters and Stability of Nonlinear Vibration Isolation Device. Journal of Physics: Conference Series, 2016, 671, 012046.	0.4	9
11	Experimental and Theoretical Investigation of Optical Spectra of Methylene Green in Solutions. Russian Physics Journal, 2019, 61, 1752-1758.	0.4	9
12	Synthesis, Mass Spectroscopy Detection, and Density Functional Theory Investigations of the Gd Endohedral Complexes of C82 Fullerenols. Computation, 2021, 9, 58.	2.0	9
13	Role of photochemical and microbial degradation of phenol in water. International Journal of Photoenergy, 2001, 3, 177-180.	2.5	8
14	Kinetics of fast reactions of triplet states and radicals under photolysis of 4,4′-dimethylbenzophenone in the presence of 4-halophenols in micellar solutions of sodium dodecyl sulfate in magnetic field. Russian Chemical Bulletin, 2005, 54, 1433-1438.	1.5	7
15	Kinetics of radical formation and decay in photooxidation of 4-halophenols sensitized by 4-carboxybenzophenone in aqueous solutions. Russian Chemical Bulletin, 2005, 54, 1439-1444.	1.5	7
16	Quenching of fluorescence of phenolic compounds and modified humic acids by cadmium ions. Luminescence, 2016, 31, 1098-1102.	2.9	7
17	The fluorescence analysis of laser photolysis of phenols in water. International Journal of Photoenergy, 2002, 4, 79-83.	2.5	6
18	Luminescence investigations of the degradation of 2-methylphenol and 4-methylphenol in water. Russian Physics Journal, 2008, 51, 1344-1355.	0.4	6

#	Article	IF	Citations
19	Degradation of the Herbicide (2,4-Dichlorophenoxyacetic Acid) Using a Photoreactor with Exciplex Lamps. Journal of Applied Spectroscopy, 2013, 80, 600-603.	0.7	6
20	Study of the Effect of UV Radiation on the Decomposition of 4-Chloro-2-Methylphenoxyacetic Acid. Russian Physics Journal, 2013, 56, 853-859.	0.4	6
21	Experimental and Quantum-Chemical Study of Electronically Excited States of Protolytic Isovanillin Species. Russian Physics Journal, 2014, 57, 86-94.	0.4	6
22	Physicochemical and spectroluminescent properties of the humic acids of coals. Solid Fuel Chemistry, 2017, 51, 1-5.	0.7	6
23	Proton-acceptor and proton-donor properties of phenol and its substitutes. Russian Physics Journal, 2005, 48, 1245-1250.	0.4	5
24	The role of UVâ€irradiation pretreatment on the degradation of 2,4â€dichlorophenoxyacetic acid in water. Luminescence, 2011, 26, 156-161.	2.9	5
25	Features of the Photodegradation of 2,4-Dichlorophenoxyacetic Acid Under the Influence of Radiation from KrCl Excilamps. Journal of Applied Spectroscopy, 2015, 82, 831-834.	0.7	5
26	Photoreactors for Solving Problems of Environmental Pollution. Russian Physics Journal, 2015, 57, 1725-1731.	0.4	5
27	Photodegradation of an Herbicide (2-methyl-4-chlorophenoxyacetic acid) in the Presence of "TiO ₂ , SnO ₂ , SnO ₂ /TiO ₂ Nanoparticles – Polypropylene Fibrous Carrier―Systems. Advanced Materials Research, 2015, 1085, 107-112.	0.3	5
28	Optimization of the Stabilization System for Electromagnetic Suspension in Active Vibration Isolation Devices. MATEC Web of Conferences, 2016, 79, 01019.	0.2	5
29	Unusual shift in the visible absorption spectrum of an active ctenophore photoprotein elucidated by time-dependent density functional theory. Photochemical and Photobiological Sciences, 2021, 20, 559-570.	2.9	5
30	THE CONCEPT OF ROBOTICS IMPLEMENTATION IN A TECHNICAL UNIVERSITY., 2017, 73,.		5
31	Luminescent analysis of photoinduced detoxification of phenol in the presence of humic substances. Journal of Applied Spectroscopy, 2006, 73, 829-833.	0.7	4
32	The use of modern UV radiation sources for the utilization of persistent toxic substances. Atmospheric and Oceanic Optics, 2010, 23, 55-59.	1.3	4
33	Photodegradation of 2-methyl-4-chlorophenol in a KrCl exciplex flow-through photoreactor: a kinetic study. Desalination and Water Treatment, 2015, 54, 1862-1871.	1.0	4
34	Nature of Electronically Excited States of Furocoumarins. Russian Physics Journal, 2019, 61, 2033-2041.	0.4	4
35	Potential energy surfaces of adsorption and migration of transition metal atoms on nanoporus materials: The case of nanoporus bigraphene and G-C3N4. Applied Surface Science, 2021, 540, 148223.	6.1	4
36	<title>The effect of UV radiation on the phenol photodegradation in the presence of humic and fulvic acids</title> ., 2004, 5743, 156.		3

#	Article	lF	Citations
37	Influence of Complexing and Excitation Energy on Spectral and Luminescent Properties of 2-Amino-4-Methylphenol. Russian Physics Journal, 2005, 48, 300-306.	0.4	3
38	Fluorescent analysis of photoinduced biodegradation of cresol isomers. Journal of Applied Spectroscopy, 2008, 75, 261-267.	0.7	3
39	Sequential degradation of p-cresol by photochemical and biological methods. Applied Biochemistry and Microbiology, 2008, 44, 493-501.	0.9	3
40	Investigation of the toxicity of aqueous media after high-energy exposure by the spectralluminescent methods. Russian Physics Journal, 2011, 54, 627-633.	0.4	3
41	Comparison of Vanillin and Isovanillin Photolysis in Aqueous Solutions. Russian Physics Journal, 2014, 56, 1287-1291.	0.4	3
42	Interaction of Humic Acids with Organic Toxicants. Russian Physics Journal, 2016, 59, 597-603.	0.4	3
43	Fluorescence analysis of polyaromatic hydrocarbon photodegradation in the presence of polypropylene microfibers. Luminescence, 2019, 34, 553-557.	2.9	3
44	Application of excilamps in a flow reactor for recovery of stable toxic compounds. Instruments and Experimental Techniques, 2011, 54, 841-845.	0.5	2
45	Spectral investigation of photochemical properties of polypropylene microfiber. Optics and Spectroscopy (English Translation of Optika I Spektroskopiya), 2013, 114, 78-82.	0.6	2
46	Development of a New Technology of Environmental Purification from Naphthalene. Advanced Materials Research, 0, 1085, 154-160.	0.3	2
47	Investigation of the Pour Point Depression Ability of Polyalkyl Acrylate Additives After Sonication. Russian Physics Journal, 2016, 59, 1289-1294.	0.4	2
48	Investigation of the Effect of Humic Acids on Phototransformation of Naphthalene Illuminated by Visible and UV Light. Russian Physics Journal, 2016, 58, 1771-1774.	0.4	2
49	Photolysis of water phenol solutions under UV excitation by KrCl laser and KrCl excilamp., 2002,,.		1
50	Improvement of photodecomposition methods of phenol containing exotoxicants in aqueous media. , 2002, 4747, 240.		1
51	Spectral-Luminescent Properties of Neutral and Ionic Cresols. Journal of Applied Spectroscopy, 2005, 72, 172-178.	0.7	1
52	Phenol and anisol fluorescence quenching in aqueous micellar solutions. Russian Physics Journal, 2006, 49, 427-434.	0.4	1
53	Phototransformation of naphthalene in water in the presence of modified polypropylene microfibers. Russian Physics Journal, 2011, 54, 500-505.	0.4	1
54	The interaction between humic acid and naphthalene after exposure to visible and UV light. Proceedings of SPIE, 2015, , .	0.8	1

#	Article	IF	CITATIONS
55	Kinetic Model for UV/H2O2 Degradation of 5-Methoxypsoralen. Russian Physics Journal, 2016, 59, 552-561.	0.4	1
56	Photodegradation of some Furocoumarins in Ethanol under UV Irradiation. Key Engineering Materials, 2016, 683, 402-405.	0.4	1
57	Proteolytic Equilibria of Vanillic Acid in the Ground and Excited States. Journal of Applied Spectroscopy, 2016, 83, 8-11.	0.7	1
58	Photophysical Processes in Coumarin Sensitizers. Russian Physics Journal, 2020, 63, 1339-1347.	0.4	1
59	Electronic Spectra and Photolysis of Bisphenol A in Water. Russian Physics Journal, 2020, 63, 1403-1411.	0.4	1
60	Engineering of Humic Acids in Biostimulants of Plant Growths. Studies in Systems, Decision and Control, 2021, , 247-261.	1.0	1
61	Towards advanced complex quantum materials for spin-related applications and photo-induced heterogeneous catalysis: The case of (Fe)@g-CN1 ($n\hat{A}=\hat{A}2,3$) and (Mn)@(g-CN1)2. Computational Materials Science, 2021, 197, 110610.	3.0	1
62	Kinetic model for UV/H2O2 degradation of 8-methoxypsoralen. , 2018, , .		1
63	The sequential photo-biodegradation of MCPA with the use of excilamps. , 2010, , .		1
64	THE USE OF DISTANCE LEARNING BY STUDENTS: ADVANTAGES AND DISADVANTAGES. , 2017, 73, .		1
65	Study interaction between humic acids and metal ions using fluorescence quenching approach. , 2018, , \cdot		1
66	Fluorescence analysis of Bisphenol A photolysis under exposure to excilamps., 2019,,.		1
67	Electronic spectra and photolysis of bisphenol a in water. Izvestiya Vysshikh Uchebnykh Zavedenii, Gornyi Zhurnal, 2020, , 102-109.	0.0	1
68	Functional Materials Based on Nanoparticle Modified Polypropylene Fibers. Micro and Nanosystems, 2021, 13, 393-404.	0.6	1
69	Migration of Excitation Energy in Furocoumarins. Frontiers in Chemistry, 2021, 9, 754950.	3.6	1
70	<title>Study of cresol phototransformations in neutral and acidic medium</title> ., 2004,,.		0
71	Investigations into the spectral and luminescent properties of methylphenols in neutral and ionic forms in aqueous micelle solutions. Russian Physics Journal, 2005, 48, 1166-1173.	0.4	0
72	Photosensitized Reactions of Psoralen and Herbicides Revealed by the Pump-Probe Method. Advanced Materials Research, 2015, 1085, 161-165.	0.3	0

#	Article	IF	CITATIONS
73	Optical properties of natural phenols in aqueous media. Proceedings of SPIE, 2015, , .	0.8	O
74	Quantum-chemical study of electronically excited states of protolytic forms of vanillic acid. Proceedings of SPIE, $2015, , .$	0.8	0
75	Control System of Parameters of the Azimuthal Module. IOP Conference Series: Materials Science and Engineering, 2017, 168, 012088.	0.6	O
76	Influence of UV Radiation on the Spectral Properties of 2-METYL-4-Chlorophenoxy Propionic Acids. Russian Physics Journal, 2020, 63, 1424-1428.	0.4	0
77	Study of the Optical Spectra of 4-Hydroxy-3-Methoxibenzoic Acid. Russian Physics Journal, 2020, 63, 1395-1402.	0.4	O
78	Spectroscopy and photochemistry of humic acids. , 2018, , .		0
79	Study of spectral and fluorescent properties of different samples of humic acids. , 2019, , .		O
80	Influence of UV radiation on spectral properties 2-methyl-4-chlorphenoxy propionic acid. Izvestiya Vysshikh Uchebnykh Zavedenii, Gornyi Zhurnal, 2020, , 122-126.	0.0	0
81	Photodegradation of bisphenol A in the presence of superfine microfiber polypropylene. , 2021, , .		O
82	Luminescent Properties of Natural Substances in Solutions under Low-Dose Radiation Exposure., 2020,,.		0
83	Photodegradation of aqueous solutions of phenoxyacetic acids under excilamps radiation. , 2021, , .		0