Masato Morikawa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5359113/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	TGF-β and the TGF-β Family: Context-Dependent Roles in Cell and Tissue Physiology. Cold Spring Harbor Perspectives in Biology, 2016, 8, a021873.	5.5	876
2	Bone morphogenetic protein receptors and signal transduction. Journal of Biochemistry, 2010, 147, 35-51.	1.7	845
3	ChIP-seq reveals cell type-specific binding patterns of BMP-specific Smads and a novel binding motif. Nucleic Acids Research, 2011, 39, 8712-8727.	14.5	186
4	Receptor (CD155)-Dependent Endocytosis of Poliovirus and Retrograde Axonal Transport of the Endosome. Journal of Virology, 2004, 78, 7186-7198.	3.4	114
5	Intracellular and extracellular TGF-β signaling in cancer: some recent topics. Frontiers of Medicine, 2018, 12, 387-411.	3.4	108
6	<scp>ZEB</scp> 1â€regulated inflammatory phenotype in breast cancer cells. Molecular Oncology, 2017, 11, 1241-1262.	4.6	100
7	TUFT1 interacts with RABGAP1 and regulates mTORC1 signaling. Cell Discovery, 2018, 4, 1.	6.7	97
8	Genome-wide mechanisms of Smad binding. Oncogene, 2013, 32, 1609-1615.	5.9	88
9	JUNB governs a feed-forward network of TGFβ signaling that aggravates breast cancer invasion. Nucleic Acids Research, 2018, 46, 1180-1195.	14.5	77
10	Transforming growth factorâ€Î²â€induced lnc <scp>RNA</scp> â€Smad7 inhibits apoptosis of mouse breast cancer Jyg <scp>MC</scp> (A) cells. Cancer Science, 2014, 105, 974-982.	3.9	65
11	BMP Sustains Embryonic Stem Cell Self-Renewal through Distinct Functions of Different Krüppel-like Factors. Stem Cell Reports, 2016, 6, 64-73.	4.8	61
12	Activation of Bmp2-Smad1 Signal and Its Regulation by Coordinated Alteration of H3K27 Trimethylation in Ras-Induced Senescence. PLoS Genetics, 2011, 7, e1002359.	3.5	59
13	RNA-binding motif protein 47 inhibits Nrf2 activity to suppress tumor growth in lung adenocarcinoma. Oncogene, 2016, 35, 5000-5009.	5.9	59
14	TGFÎ ² and EGF signaling orchestrates the AP-1- and p63 transcriptional regulation of breast cancer invasiveness. Oncogene, 2020, 39, 4436-4449.	5.9	52
15	Ets family members induce lymphangiogenesis through physical and functional interaction with Prox1. Journal of Cell Science, 2011, 124, 2753-2762.	2.0	46
16	Cell Type-specific Target Selection by Combinatorial Binding of Smad2/3 Proteins and Hepatocyte Nuclear Factor 41± in HepG2 Cells. Journal of Biological Chemistry, 2011, 286, 29848-29860.	3.4	38
17	Lymphomatoid Granulomatosis Involving Central Nervous System Successfully Treated With Rituximab Alone. Archives of Neurology, 2008, 65, 662-5.	4.5	37
18	Ras and TGF-β signaling enhance cancer progression by promoting the ΔNp63 transcriptional program. Science Signaling, 2016, 9, ra84.	3.6	33

MASATO MORIKAWA

#	Article	IF	CITATIONS
19	Bone morphogenetic protein signaling mediated by ALK-2 and DLX2 regulates apoptosis in glioma-initiating cells. Oncogene, 2017, 36, 4963-4974.	5.9	30
20	EGFL7 Mediates BMP9-Induced Sprouting Angiogenesis of Endothelial Cells Derived from Human Embryonic Stem Cells. Stem Cell Reports, 2019, 12, 1250-1259.	4.8	26
21	BMP-induced Atoh8 attenuates osteoclastogenesis by suppressing Runx2 transcriptional activity and reducing the Rankl/Opg expression ratio in osteoblasts. Bone Research, 2020, 8, 32.	11.4	25
22	The ALK-1/SMAD/ATOH8 axis attenuates hypoxic responses and protects against the development of pulmonary arterial hypertension. Science Signaling, 2019, 12, .	3.6	24
23	Comparative analysis of TTFâ€1 binding DNA regions in smallâ€cell lung cancer and nonâ€smallâ€cell lung cancer. Molecular Oncology, 2020, 14, 277-293.	4.6	22
24	Palbociclib enhances activinâ€ <scp>SMAD</scp> â€induced cytostasis in estrogen receptorâ€positive breast cancer. Cancer Science, 2019, 110, 209-220.	3.9	17
25	Antiâ€pyroptotic function of TGFâ€Î² is suppressed by a synthetic dsRNA analogue in triple negative breast cancer cells. Molecular Oncology, 2021, 15, 1289-1307.	4.6	14
26	Tyrosine kinase Eph receptor A6 sensitizes gliomaâ€initiating cells towards bone morphogenetic proteinâ€induced apoptosis. Cancer Science, 2019, 110, 3486-3496.	3.9	13
27	Identification of a novel fusion gene <i>HMGA2â€EGFR</i> in glioblastoma. International Journal of Cancer, 2018, 142, 1627-1639.	5.1	12
28	Systemic administration of monovalent follistatin-like 3-Fc-fusion protein increases muscle mass in mice. IScience, 2021, 24, 102488.	4.1	12
29	PRRX1 induced by BMP signaling decreases tumorigenesis by epigenetically regulating gliomaâ€initiating cell properties via DNA methyltransferase 3A. Molecular Oncology, 2022, 16, 269-288.	4.6	5
30	MAB21L4 regulates the TGF-β-induced expression of target genes in epidermal keratinocytes. Journal of Biochemistry, 2022, 171, 399-410.	1.7	3
31	Preparation of monovalent follistatin-like 3-Fc-fusion protein and evaluation of its effects on muscle mass in mice. STAR Protocols, 2021, 2, 100839.	1.2	1