
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5359048/publications.pdf Version: 2024-02-01

FEIRE A DIIRSTRA

#	Article	IF	CITATIONS
1	Nitrogen and phosphorus availability have stronger effects on gross and net nitrogen mineralisation than wheat rhizodeposition. Geoderma, 2022, 405, 115440.	5.1	10
2	Potential gross nitrogen mineralization and its linkage with microbial respiration along a forest transect in eastern China. Applied Soil Ecology, 2022, 171, 104347.	4.3	4
3	Nitrogen addition increases microbial necromass in croplands and bacterial necromass in forests: A global meta-analysis. Soil Biology and Biochemistry, 2022, 165, 108500.	8.8	41
4	Increased soil organic matter after 28Âyears of nitrogen fertilization only with plastic film mulching is controlled by maize root biomass. Science of the Total Environment, 2022, 810, 152244.	8.0	12
5	Ensuring planetary survival: the centrality of organic carbon in balancing the multifunctional nature of soils. Critical Reviews in Environmental Science and Technology, 2022, 52, 4308-4324.	12.8	52
6	Nitrogen enrichment buffers phosphorus limitation by mobilizing mineralâ€bound soil phosphorus in grasslands. Ecology, 2022, 103, e3616.	3.2	35
7	Drought Impacts on Tree Root Traits Are Linked to Their Decomposability and Net Carbon Release. Frontiers in Forests and Global Change, 2022, 5, .	2.3	4
8	Phosphorus Supply Increases Nitrogen Transformation Rates and Retention in Soil: A Global Metaâ€Analysis. Earth's Future, 2022, 10, .	6.3	29
9	Carbon efficiency for nutrient acquisition (CENA) by plants: role of nutrient availability and microbial symbionts. Plant and Soil, 2022, 476, 289-300.	3.7	9
10	Crop residue decomposition and nutrient release are independently affected by nitrogen fertilization, plastic film mulching, and residue type. European Journal of Agronomy, 2022, 138, 126535.	4.1	4
11	Plastics in soil environments: All things considered. Advances in Agronomy, 2022, , 1-132.	5.2	3
12	Biochar aging increased microbial carbon use efficiency but decreased biomass turnover time. Geoderma, 2021, 382, 114710.	5.1	26
13	A novel ¹³ C pulseâ€labelling method to quantify the contribution of rhizodeposits to soil respiration in a grassland exposed to drought and nitrogen addition. New Phytologist, 2021, 230, 857-866.	7.3	25
14	Root effects on soil organic carbon: a doubleâ€edged sword. New Phytologist, 2021, 230, 60-65.	7.3	169
15	Biocides provide a source of carbon and nitrogen directly to surviving microbes and indirectly through a pulse in microbial necromass. Applied Soil Ecology, 2021, 160, 103862.	4.3	9
16	Microbial carbon use efficiency, biomass residence time and temperature sensitivity across ecosystems and soil depths. Soil Biology and Biochemistry, 2021, 154, 108117.	8.8	26
17	Drought-induced and seasonal variation in carbon use efficiency is associated with fungi:bacteria ratio and enzyme production in a grassland ecosystem. Soil Biology and Biochemistry, 2021, 155, 108159.	8.8	29
18	Global analysis of phosphorus fertilizer use efficiency in cereal crops. Global Food Security, 2021, 29, 100545.	8.1	38

#	Article	IF	CITATIONS
19	Arbuscular mycorrhizal trees cause a higher carbon to nitrogen ratio of soil organic matter decomposition via rhizosphere priming than ectomycorrhizal trees. Soil Biology and Biochemistry, 2021, 157, 108246.	8.8	22
20	Biochar application rate does not improve plant water availability in soybean under drought stress. Agricultural Water Management, 2021, 253, 106940.	5.6	27
21	Carbon allocation to the rhizosphere is affected by drought and nitrogen addition. Journal of Ecology, 2021, 109, 3699-3709.	4.0	48
22	Stability of elemental content correlates with plant resistance to soil impoverishment. Plant and Soil, 2021, 467, 213-226.	3.7	5
23	Nitrogen Fertilisation Increases Specific Root Respiration in Ectomycorrhizal but Not in Arbuscular Mycorrhizal Plants: A Meta-Analysis. Frontiers in Plant Science, 2021, 12, 711720.	3.6	5
24	Reallocation of nitrogen and phosphorus from roots drives regrowth of grasses and sedges after defoliation under deficit irrigation and nitrogen enrichment. Journal of Ecology, 2021, 109, 4071-4080.	4.0	13
25	Priming effect varies with root order: A case of Cunninghamia lanceolata. Soil Biology and Biochemistry, 2021, 160, 108354.	8.8	10
26	Exogenous P compounds differentially interacted with N availability to regulate enzymatic activities in a meadow steppe. European Journal of Soil Science, 2020, 71, 667-680.	3.9	7
27	Plant roots are more important than temperature in modulating carbon release in a limed acidic soil. European Journal of Soil Science, 2020, 71, 727-739.	3.9	8
28	Plant uptake of nitrogen and phosphorus among grassland species affected by drought along a soil available phosphorus gradient. Plant and Soil, 2020, 448, 121-132.	3.7	34
29	Rhizodeposition mediates the effect of nitrogen and phosphorous availability on microbial carbon use efficiency and turnover rate. Soil Biology and Biochemistry, 2020, 142, 107705.	8.8	36
30	Biochar-induced reductions in the rhizosphere priming effect are weaker under elevated CO2. Soil Biology and Biochemistry, 2020, 142, 107700.	8.8	15
31	Inter-seasonal Nitrogen Loss with Drought Depends on Fertilizer Management in a Seminatural Australian Grassland. Ecosystems, 2020, 23, 1281-1293.	3.4	10
32	Changes in soil C:N:P stoichiometry along an aridity gradient in drylands of northern China. Geoderma, 2020, 361, 114087.	5.1	37
33	Linking absorptive roots and their functional traits with rhizosphere priming of tree species. Soil Biology and Biochemistry, 2020, 150, 107997.	8.8	16
34	Rhizosphere priming effects of Lolium perenne and Trifolium repens depend on phosphorus fertilization and biological nitrogen fixation. Soil Biology and Biochemistry, 2020, 150, 108005.	8.8	19
35	New soil carbon sequestration with nitrogen enrichment: a meta-analysis. Plant and Soil, 2020, 454, 299-310.	3.7	35
36	Carbon and nitrogen dynamics affected by litter and nitrogen addition in a grassland soil: Role of fungi. European Journal of Soil Biology, 2020, 100, 103211.	3.2	11

#	Article	IF	CITATIONS
37	Carbon storage and plant-soil linkages among soil aggregates as affected by nitrogen enrichment and mowing management in a meadow grassland. Plant and Soil, 2020, 457, 407-420.	3.7	20
38	Rhizosphere priming is tightly associated with root-driven aggregate turnover. Soil Biology and Biochemistry, 2020, 149, 107964.	8.8	21
39	Nitrogen and phosphorus availability affect wheat carbon allocation pathways: rhizodeposition and mycorrhizal symbiosis. Soil Research, 2020, 58, 125.	1.1	5
40	Rhizosphere priming effects in soil aggregates with different size classes. Ecosphere, 2020, 11, e03027.	2.2	8
41	Root effects on the temperature sensitivity of soil respiration depend on climatic condition and ecosystem type. Soil and Tillage Research, 2020, 199, 104574.	5.6	27
42	Nutrient Loading in the River Systems Around Major Cities in Bangladesh: A Quantitative Estimate with Consequences and Potential Recycling Options. , 2020, , 111-128.		1
43	Effects of amendments on phosphorous status in soils with different phosphorous levels. Catena, 2019, 172, 97-103.	5.0	25
44	Decoupling of plant and soil metal nutrients as affected by nitrogen addition in a meadow steppe. Plant and Soil, 2019, 443, 337-351.	3.7	16
45	Changes of plant N:P stoichiometry across a 3000-km aridity transect in grasslands of northern China. Plant and Soil, 2019, 443, 107-119.	3.7	24
46	Opposite effects of nitrogen fertilization and plastic film mulching on crop N and P stoichiometry in a temperate agroecosystem. Journal of Plant Ecology, 2019, 12, 682-692.	2.3	18
47	Chemically oxidized biochar increases ammonium-15N recovery and phosphorus uptake in a grassland. Biology and Fertility of Soils, 2019, 55, 577-588.	4.3	17
48	Roots of non-woody perennials accelerated long-term soil organic matter decomposition through biological and physical mechanisms. Soil Biology and Biochemistry, 2019, 134, 42-53.	8.8	41
49	Variation in rhizosphere priming and microbial growth and carbon use efficiency caused by wheat genotypes and temperatures. Soil Biology and Biochemistry, 2019, 134, 54-61.	8.8	20
50	Fungicide and Bactericide Effects on Carbon and Nitrogen Cycling in Soils: A Meta-Analysis. Soil Systems, 2019, 3, 23.	2.6	22
51	Phosphorus availability and plants alter soil nitrogen retention and loss. Science of the Total Environment, 2019, 671, 786-794.	8.0	30
52	Carbon and phosphorus addition effects on microbial carbon use efficiency, soil organic matter priming, gross nitrogen mineralization and nitrous oxide emission from soil. Soil Biology and Biochemistry, 2019, 134, 175-186.	8.8	98
53	Exogenous phosphorus compounds interact with nitrogen availability to regulate dynamics of soil inorganic phosphorus fractions in a meadow steppe. Biogeosciences, 2019, 16, 4293-4306.	3.3	16
54	Response of soil carbon to nitrogen and water addition differs between labile and recalcitrant fractions: Evidence from multi–year data and different soil depths in a semi-arid steppe. Catena, 2019, 172, 857-865.	5.0	13

#	Article	IF	CITATIONS
55	Litter carbon and nutrient chemistry control the magnitude of soil priming effect. Functional Ecology, 2019, 33, 876-888.	3.6	44
56	Drought and heat stress reduce yield and alter carbon rhizodeposition of different wheat genotypes. Journal of Agronomy and Crop Science, 2019, 205, 157-167.	3.5	27
57	Aridity thresholds of soil microbial metabolic indices along a 3,200 km transect across arid and semi-arid regions in Northern China. PeerJ, 2019, 7, e6712.	2.0	15
58	Crowther et al. reply. Nature, 2018, 554, E7-E8.	27.8	14
59	Rhizosphere priming effects on soil carbon and nitrogen dynamics among tree species with and without intraspecific competition. New Phytologist, 2018, 218, 1036-1048.	7.3	81
60	Warming and Elevated CO2 Interact to Alter Seasonality and Reduce Variability of Soil Water in a Semiarid Grassland. Ecosystems, 2018, 21, 1533-1544.	3.4	11
61	Elevated <scp>CO</scp> ₂ and water addition enhance nitrogen turnover in grassland plants with implications for temporal stability. Ecology Letters, 2018, 21, 674-682.	6.4	20
62	Higher capability of C3 than C4 plants to use nitrogen inferred from nitrogen stable isotopes along an aridity gradient. Plant and Soil, 2018, 428, 93-103.	3.7	17
63	Effects of carbon and phosphorus addition on microbial respiration, N2O emission, and gross nitrogen mineralization in a phosphorus-limited grassland soil. Biology and Fertility of Soils, 2018, 54, 481-493.	4.3	31
64	Enhanced biological nitrogen fixation and competitive advantage of legumes in mixed pastures diminish with biochar aging. Plant and Soil, 2018, 424, 639-651.	3.7	36
65	Mineral-Associated Soil Carbon is Resistant to Drought but Sensitive to Legumes and Microbial Biomass in an Australian Grassland. Ecosystems, 2018, 21, 349-359.	3.4	21
66	Differential responses of canopy nutrients to experimental drought along a natural aridity gradient. Ecology, 2018, 99, 2230-2239.	3.2	61
67	Elevated <scp>CO</scp> ₂ and warming cause interactive effects on soil carbon and shifts in carbon use by bacteria. Ecology Letters, 2018, 21, 1639-1648.	6.4	27
68	Soil properties determine the elevational patterns of base cations and micronutrients in the plant–soil system up to the upper limits of trees and shrubs. Biogeosciences, 2018, 15, 1763-1774.	3.3	9
69	Effects of extreme drought on plant nutrient uptake and resorption in rhizomatous vs bunchgrass-dominated grasslands. Oecologia, 2018, 188, 633-643.	2.0	35
70	Rhizosphere priming of grassland species under different water and nitrogen conditions: a mechanistic hypothesis of C-N interactions. Plant and Soil, 2018, 429, 303-319.	3.7	29
71	Intensity and frequency of nitrogen addition alter soil chemical properties depending on mowing management in a temperate steppe. Journal of Environmental Management, 2018, 224, 77-86.	7.8	27
72	Studying root water uptake of wheat genotypes in different soils using water δ180 stable isotopes. Agriculture, Ecosystems and Environment, 2018, 264, 119-129.	5.3	14

#	Article	IF	CITATIONS
73	Long-Term Aging of Biochar. Advances in Agronomy, 2017, 141, 1-51.	5.2	172
74	Stoichiometric N:P flexibility and mycorrhizal symbiosis favour plant resistance against drought. Journal of Ecology, 2017, 105, 958-967.	4.0	101
75	Challenging terrestrial biosphere models with data from the longâ€ŧerm multifactor Prairie Heating and <scp>CO</scp> ₂ Enrichment experiment. Global Change Biology, 2017, 23, 3623-3645.	9.5	42
76	Aged biochar affects gross nitrogen mineralization and recovery: a ¹⁵ N study in two contrasting soils. GCB Bioenergy, 2017, 9, 1196-1206.	5.6	76
77	Soil carbon loss regulated by drought intensity and available substrate: A meta-analysis. Soil Biology and Biochemistry, 2017, 112, 90-99.	8.8	130
78	Faster turnover of new soil carbon inputs under increased atmospheric <scp>CO</scp> ₂ . Global Change Biology, 2017, 23, 4420-4429.	9.5	96
79	Sensitivities to nitrogen and water addition vary among microbial groups within soil aggregates in a semiarid grassland. Biology and Fertility of Soils, 2017, 53, 129-140.	4.3	57
80	Variations of N2O fluxes in response to warming and cooling in an alpine meadow on the Tibetan Plateau. Climatic Change, 2017, 143, 129-142.	3.6	7
81	Aging Induced Changes in Biochar's Functionality and Adsorption Behavior for Phosphate and Ammonium. Environmental Science & Technology, 2017, 51, 8359-8367.	10.0	192
82	Rhizosphere priming effects of soybean and cottonwood: do they vary with latitude?. Plant and Soil, 2017, 420, 349-360.	3.7	5
83	Effect of crop rotation on mycorrhizal colonization and wheat yield under different fertilizer treatments. Agriculture, Ecosystems and Environment, 2017, 247, 130-136.	5.3	59
84	Enhanced decomposition and nitrogen mineralization sustain rapid growth of Eucalyptus regnans after wildfire. Journal of Ecology, 2017, 105, 229-236.	4.0	16
85	Alteration of soil carbon and nitrogen pools and enzyme activities as affected by increased soil coarseness. Biogeosciences, 2017, 14, 2155-2166.	3.3	7
86	Variation in specific root length among 23 wheat genotypes affects leaf δ 13 C and yield. Agriculture, Ecosystems and Environment, 2017, 246, 21-29.	5.3	22
87	Soil warming and liming impacts on the recovery of 15 N in an acidic soil under soybean cropping. Journal of Plant Nutrition and Soil Science, 2016, 179, 193-197.	1.9	1
88	Impacts of warming and elevated <scp>CO</scp> ₂ on a semiâ€arid grassland are nonâ€additive, shift with precipitation, and reverse over time. Ecology Letters, 2016, 19, 956-966.	6.4	127
89	Quantifying global soil carbon losses in response to warming. Nature, 2016, 540, 104-108.	27.8	879
90	Biochar Field Study: Greenhouse Gas Emissions, Productivity, and Nutrients in Two Soils. Agronomy Journal, 2016, 108, 1805-1815.	1.8	19

#	Article	IF	CITATIONS
91	Water, nitrogen and phosphorus use efficiencies of four tree species in response to variable water and nutrient supply. Plant and Soil, 2016, 406, 187-199.	3.7	43
92	Effect of twenty four wheat genotypes on soil biochemical and microbial properties. Plant and Soil, 2016, 404, 141-155.	3.7	42
93	Asymmetric responses of methane uptake to climate warming and cooling of a Tibetan alpine meadow assessed through a reciprocal translocation along an elevation gradient. Plant and Soil, 2016, 402, 263-275.	3.7	9
94	A threshold reveals decoupled relationship of sulfur with carbon and nitrogen in soils across arid and semi-arid grasslands in northern China. Biogeochemistry, 2016, 127, 141-153.	3.5	29
95	Soil microbial community resistance to drought and links to C stabilization in an Australian grassland. Soil Biology and Biochemistry, 2016, 103, 171-180.	8.8	80
96	Drought effects on Helianthus annuus and Glycine max metabolites: from phloem to root exudates. Rhizosphere, 2016, 2, 85-97.	3.0	70
97	Elevated ozone effects on soil nitrogen cycling differ among wheat cultivars. Applied Soil Ecology, 2016, 108, 187-194.	4.3	26
98	Denitrification and associated N 2 O emissions are limited by phosphorus availability in a grassland soil. Geoderma, 2016, 284, 34-41.	5.1	59
99	Quantifying and reducing uncertainties in estimated soil CO ₂ fluxes with hierarchical dataâ€model integration. Journal of Geophysical Research G: Biogeosciences, 2016, 121, 2935-2948.	3.0	6
100	Dual-labeling with 15N and H2 18O to investigate water and N uptake of wheat under different water regimes. Plant and Soil, 2016, 408, 429-441.	3.7	15
101	Thresholds in decoupled soil-plant elements under changing climatic conditions. Plant and Soil, 2016, 409, 159-173.	3.7	30
102	Mediation of soil C decomposition by arbuscular mycorrizhal fungi in grass rhizospheres under elevated CO2. Biogeochemistry, 2016, 127, 45-55.	3.5	24
103	Influence of life form, taxonomy, climate, and soil properties on shoot and root concentrations of 11 elements in herbaceous plants in a temperate desert. Plant and Soil, 2016, 398, 339-350.	3.7	41
104	Carbon dynamics from carbonate dissolution in Australian agricultural soils. Soil Research, 2015, 53, 144.	1.1	28
105	Phosphorus addition enhances loss of nitrogen in a phosphorus-poor soil. Soil Biology and Biochemistry, 2015, 82, 99-106.	8.8	65
106	Plant and microbial uptake of nitrogen and phosphorus affected by drought using 15N and 32P tracers. Soil Biology and Biochemistry, 2015, 82, 135-142.	8.8	87
107	Biochar reduces the rhizosphere priming effect on soil organic carbon. Soil Biology and Biochemistry, 2015, 88, 372-379.	8.8	57
108	Fire Eases Imbalances of Nitrogen and Phosphorus in Woody Plants. Ecosystems, 2015, 18, 769-779.	3.4	39

#	Article	IF	CITATIONS
109	Soil Microbes Compete Strongly with Plants for Soil Inorganic and Amino Acid Nitrogen in a Semiarid Grassland Exposed to Elevated CO2 and Warming. Ecosystems, 2015, 18, 867-880.	3.4	25
110	Synergistic Effects of Biochar and NPK Fertilizer on Soybean Yield in an Alkaline Soil. Pedosphere, 2015, 25, 713-719.	4.0	96
111	Dry-rewetting cycles regulate wheat carbon rhizodeposition, stabilization and nitrogen cycling. Soil Biology and Biochemistry, 2015, 81, 195-203.	8.8	83
112	Effects of Biochar on Soil Microbial Biomass after Four Years of Consecutive Application in the North China Plain. PLoS ONE, 2014, 9, e102062.	2.5	79
113	Opportunities and constraints for biochar technology in Australian agriculture: looking beyond carbon sequestration. Soil Research, 2014, 52, 739.	1.1	49
114	Plant rhizosphere influence on microbial C metabolism: the role of elevated CO2, N availability and root stoichiometry. Biogeochemistry, 2014, 117, 229-240.	3.5	52
115	Temperature sensitivity and carbon release in an acidic soil amended with lime and mulch. Geoderma, 2014, 214-215, 168-176.	5.1	29
116	Drought effect on plant nitrogen and phosphorus: a metaâ€analysis. New Phytologist, 2014, 204, 924-931.	7.3	456
117	Disentangling root responses to climate change in a semiarid grassland. Oecologia, 2014, 175, 699-711.	2.0	52
118	Plant nitrogen uptake drives responses of productivity to nitrogen and water addition in a grassland. Scientific Reports, 2014, 4, 4817.	3.3	71
119	Leaf nitrogen and phosphorus of temperate desert plants in response to climate and soil nutrient availability. Scientific Reports, 2014, 4, 6932.	3.3	74
120	Climate change reduces the net sink of <scp><scp>CH₄</scp></scp> and <scp><scp>N₂O</scp></scp> in a semiarid grassland. Global Change Biology, 2013, 19, 1816-1826.	9.5	111
121	Inorganic and organic carbon dynamics in a limed acid soil are mediated by plants. Soil Biology and Biochemistry, 2013, 57, 549-555.	8.8	47
122	Rhizosphere priming: a nutrient perspective. Frontiers in Microbiology, 2013, 4, 216.	3.5	407
123	Tracking Short-Term Effects of Nitrogen-15 Addition on Nitrous Oxide Fluxes Using Fourier-Transform Infrared Spectroscopy. Journal of Environmental Quality, 2013, 42, 1327-1340.	2.0	16
124	Warming Reduces Carbon Losses from Grassland Exposed to Elevated Atmospheric Carbon Dioxide. PLoS ONE, 2013, 8, e71921.	2.5	53
125	Effects of elevated carbon dioxide and increased temperature on methane and nitrous oxide fluxes: evidence from field experiments. Frontiers in Ecology and the Environment, 2012, 10, 520-527.	4.0	172
126	Elevated CO2 and Warming Effects on Soil Carbon Sequestration and Greenhouse Gas Exchange in Agroecosystems. , 2012, , 467-486.		10

8

#	Article	IF	CITATIONS
127	Climate change alters stoichiometry of phosphorus and nitrogen in a semiarid grassland. New Phytologist, 2012, 196, 807-815.	7.3	209
128	Nitrogen cycling and water pulses in semiarid grasslands: are microbial and plant processes temporally asynchronous?. Oecologia, 2012, 170, 799-808.	2.0	90
129	Controls over Soil Nitrogen Pools in a Semiarid Grassland Under Elevated CO2 and Warming. Ecosystems, 2012, 15, 761-774.	3.4	45
130	Interactions between elevated atmospheric CO ₂ and defoliation on North American rangeland plant species at low and high N availability. Grass and Forage Science, 2012, 67, 350-360.	2.9	3
131	Simple additive effects are rare: a quantitative review of plant biomass and soil process responses to combined manipulations of <scp><scp>CO₂</scp></scp> and temperature. Global Change Biology, 2012, 18, 2681-2693.	9.5	365
132	Elevated CO ₂ and warming effects on CH ₄ uptake in a semiarid grassland below optimum soil moisture. Journal of Geophysical Research, 2011, 116, .	3.3	55
133	C4 grasses prosper as carbon dioxide eliminates desiccation in warmed semi-arid grassland. Nature, 2011, 476, 202-205.	27.8	445
134	Elevated CO2, but not defoliation, enhances N cycling and increases short-term soil N immobilization regardless of N addition in a semiarid grassland. Soil Biology and Biochemistry, 2011, 43, 2247-2256.	8.8	7
135	Response of soil organic matter pools to elevated CO2 and warming in a semi-arid grassland. Plant and Soil, 2011, 347, 339-350.	3.7	59
136	Rhizosphere interactions, carbon allocation, and nitrogen acquisition of two perennial North American grasses in response to defoliation and elevated atmospheric CO2. Oecologia, 2011, 165, 755-770.	2.0	27
137	Microbially mediated CH4 consumption and N2O emission is affected by elevated CO2, soil water content, and composition of semi-arid grassland species. Plant and Soil, 2010, 329, 269-281.	3.7	30
138	Water limitation and plant inter-specific competition reduce rhizosphere-induced C decomposition and plant N uptake. Soil Biology and Biochemistry, 2010, 42, 1073-1082.	8.8	67
139	Contrasting effects of elevated CO ₂ and warming on nitrogen cycling in a semiarid grassland. New Phytologist, 2010, 187, 426-437.	7.3	150
140	Elevated CO ₂ effects on semiâ€arid grassland plants in relation to water availability and competition. Functional Ecology, 2010, 24, 1152-1161.	3.6	46
141	Carbon sequestration in agricultural lands of the United States. Journal of Soils and Water Conservation, 2010, 65, 6A-13A.	1.6	125
142	Modeling the flow of ¹⁵ N after a ¹⁵ N pulse to study longâ€ŧerm N dynamics in a semiarid grassland. Ecology, 2009, 90, 2171-2182.	3.2	9
143	Does accelerated soil organic matter decomposition in the presence of plants increase plant N availability?. Soil Biology and Biochemistry, 2009, 41, 1080-1087.	8.8	140
144	Antagonistic effects of species on C respiration and net N mineralization in soils from mixed coniferous plantations. Forest Ecology and Management, 2009, 257, 1112-1118.	3.2	19

#	Article	IF	CITATIONS
145	Increased soil moisture content increases plant N uptake and the abundance of 15N in plant biomass. Plant and Soil, 2008, 302, 263-271.	3.7	21
146	Longâ€ŧerm enhancement of N availability and plant growth under elevated CO ₂ in a semiâ€arid grassland. Functional Ecology, 2008, 22, 975-982.	3.6	64
147	PLANT DIVERSITY, CO2, AND N INFLUENCE INORGANIC AND ORGANIC N LEACHING IN GRASSLANDS. Ecology, 2007, 88, 490-500.	3.2	60
148	Interactions between soil and tree roots accelerate longâ€ŧerm soil carbon decomposition. Ecology Letters, 2007, 10, 1046-1053.	6.4	215
149	Theoretical Proof and Empirical Confirmation of a Continuous Labeling Method Using Naturally13C-Depleted Carbon Dioxide. Journal of Integrative Plant Biology, 2007, 49, 401-407.	8.5	26
150	The effects of Glycine max and Helianthus annuus on nutrient availability in two soils. Soil Biology and Biochemistry, 2007, 39, 2160-2163.	8.8	17
151	Moisture modulates rhizosphere effects on C decomposition in two different soil types. Soil Biology and Biochemistry, 2007, 39, 2264-2274.	8.8	102
152	Soil Processes Affected by Sixteen Grassland Species Grown under Different Environmental Conditions. Soil Science Society of America Journal, 2006, 70, 770-777.	2.2	65
153	Tree Patches Show Greater N Losses but Maintain Higher Soil N Availability than Grassland Patches in a Frequently Burned Oak Savanna. Ecosystems, 2006, 9, 441-452.	3.4	41
154	Plant biomass influences rhizosphere priming effects on soil organic matter decomposition in two differently managed soils. Soil Biology and Biochemistry, 2006, 38, 2519-2526.	8.8	107
155	Divergent effects of elevated CO2, N fertilization, and plant diversity on soil C and N dynamics in a grassland field experiment. Plant and Soil, 2005, 272, 41-52.	3.7	107
156	Nitrogen deposition and plant species interact to influence soil carbon stabilization. Ecology Letters, 2004, 7, 1192-1198.	6.4	91
157	Calcium weathering in forested soils and the effect of different tree species. Biogeochemistry, 2003, 62, 253-275.	3.5	67
158	Aluminum solubility and mobility in relation to organic carbon in surface soils affected by six tree species of the northeastern United States. Geoderma, 2003, 114, 33-47.	5.1	54
159	Calcium mineralization in the forest floor and surface soil beneath different tree species in the northeastern US. Forest Ecology and Management, 2003, 175, 185-194.	3.2	66
160	Tree Species Effects on Calcium Cycling: The Role of Calcium Uptake in Deep Soils. Ecosystems, 2002, 5, 385-398.	3.4	136
161	The effect of organic acids on base cation leaching from the forest floor under six North American tree species. European Journal of Soil Science, 2001, 52, 205-214.	3.9	51
162	Belowground Carbon Efficiency for Nitrogen and Phosphorus Acquisition Varies Between Lolium perenne and Trifolium repens and Depends on Phosphorus Fertilization. Frontiers in Plant Science, 0, 13	3.6	1