Gianfranco Bertone

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5358840/publications.pdf

Version: 2024-02-01

32 papers

5,625 citations

236925 25 h-index 32 g-index

32 all docs $\begin{array}{c} 32 \\ \text{docs citations} \end{array}$

times ranked

32

8931 citing authors

#	Article	IF	CITATIONS
1	The effect of mission duration on LISA science objectives. General Relativity and Gravitation, 2022, 54, 3.	2.0	24
2	Measuring the dark matter environments of black hole binaries with gravitational waves. Physical Review D, 2022, 105 , .	4.7	29
3	Sharp Signals of Boson Clouds in Black Hole Binary Inspirals. Physical Review Letters, 2022, 128, .	7.8	23
4	Ionization of gravitational atoms. Physical Review D, 2022, 105, .	4.7	30
5	New horizons for fundamental physics with LISA. Living Reviews in Relativity, 2022, 25, .	26.7	82
6	Evidence of a population of dark subhaloes from $\langle i \rangle$ Gaia $\langle i \rangle$ and Pan-STARRS observations of the GD-1 stream. Monthly Notices of the Royal Astronomical Society, 2021, 502, 2364-2380.	4.4	47
7	Multiwavelength detectability of isolated black holes in the Milky Way. Monthly Notices of the Royal Astronomical Society, 2021, 505, 4036-4047.	4.4	5
8	Towards constraining warm dark matter with stellar streams through neural simulation-based inference. Monthly Notices of the Royal Astronomical Society, 2021, 507, 1999-2011.	4.4	8
9	Detecting dark matter around black holes with gravitational waves: Effects of dark-matter dynamics on the gravitational waveform. Physical Review D, 2020, 102, .	4.7	63
10	Gravitational wave probes of dark matter: challenges and opportunities. SciPost Physics Core, 2020, 3,	2.8	52
11	Multi-wavelength astronomical searches for primordial black holes. Journal of Cosmology and Astroparticle Physics, 2019, 2019, 026-026.	5.4	44
12	Black holes, gravitational waves and fundamental physics: a roadmap. Classical and Quantum Gravity, 2019, 36, 143001.	4.0	451
13	Primordial black holes as silver bullets for new physics at the weak scale. Physical Review D, 2019, 100,	4.7	25
14	Identifying WIMP dark matter from particle and astroparticle data. Journal of Cosmology and Astroparticle Physics, 2018, 2018, 026-026.	5.4	31
15	Probing the nature of dark matter particles with stellar streams. Journal of Cosmology and Astroparticle Physics, 2018, 2018, 061-061.	5.4	41
16	A new era in the search for dark matter. Nature, 2018, 562, 51-56.	27.8	259
17	Merger rate of a subdominant population of primordial black holes. Physical Review D, 2018, 98, .	4.7	83
18	Searching for Primordial Black Holes in the Radio and X-Ray Sky. Physical Review Letters, 2017, 118, 241101.	7.8	114

#	Article	lF	Citations
19	Effective field theory of dark matter: a global analysis. Journal of High Energy Physics, 2016, 2016, 1.	4.7	24
20	Dark matter subhalos and unidentified sources in the Fermi 3FGL source catalog. Journal of Cosmology and Astroparticle Physics, 2016, 2016, 028-028.	5. 4	30
21	Global analysis of the pMSSM in light of the Fermi GeV excess: prospects for the LHC Run-II and astroparticle experiments. Journal of Cosmology and Astroparticle Physics, 2016, 2016, 037-037.	5 . 4	48
22	No WIMP mini-spikes in dwarf spheroidal galaxies. Journal of Cosmology and Astroparticle Physics, 2015, 2015, 004-004.	5. 4	12
23	A realistic assessment of the CTA sensitivity to dark matter annihilation. Journal of Cosmology and Astroparticle Physics, 2015, 2015, 055-055.	5 . 4	100
24	LHC and dark matter phenomenology of the NUGHM. Journal of High Energy Physics, 2014, 2014, 1.	4.7	4
25	Global fits of the cMSSM including the first LHC and XENON100 data. Journal of Cosmology and Astroparticle Physics, 2012, 2012, 015-015.	5.4	53
26	Fundamental statistical limitations of future dark matter direct detection experiments. Physical Review D, 2012, 86, .	4.7	38
27	The moment of truth for WIMP dark matter. Nature, 2010, 468, 389-393.	27.8	117
28	Collisionally regenerated dark matter structures in galactic nuclei. Physical Review D, 2007, 75, .	4.7	46
29	Prospects for detecting dark matter with neutrino telescopes in intermediate mass black hole scenarios. Physical Review D, 2006, 73, .	4.7	32
30	Particle dark matter: evidence, candidates and constraints. Physics Reports, 2005, 405, 279-390.	25.6	3,454
31	New signature of dark matter annihilations: Gamma rays from intermediate-mass black holes. Physical Review D, 2005, 72, .	4.7	132
32	Time-dependent models for dark matter at the galactic center. Physical Review D, 2005, 72, .	4.7	124