Thomas Maden-Wilkinson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5358784/publications.pdf

Version: 2024-02-01

471371 454834 31 989 17 30 citations h-index g-index papers 31 31 31 1370 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	COVID-19 patients require multi-disciplinary rehabilitation approaches to address persisting symptom profiles and restore pre-COVID quality of life. Expert Review of Respiratory Medicine, 2022, 16, 595-600.	1.0	18
2	"l Want to Create So Much Stimulus That Adaptation Goes Through the Roof― High-Performance Strength Coaches' Perceptions of Planned Overreaching. Frontiers in Sports and Active Living, 2022, 4, 893581.	0.9	2
3	The Relationship Between Neuromuscular Function and the Wâ \in 2 in Elite Cyclists. International Journal of Sports Physiology and Performance, 2021, 16, 1656-1662.	1.1	5
4	Development of a Novel Nordic Hamstring Exercise Device to Measure and Modify the Knee Flexors' Torque-Length Relationship. Frontiers in Sports and Active Living, 2021, 3, 629606.	0.9	6
5	"ls It Overtraining or Just Work Ethic?― Coaches' Perceptions of Overtraining in High-Performance Strength Sports. Sports, 2021, 9, 85.	0.7	7
6	Agreement between methods and terminology used to assess the kinematics of the Nordic hamstring exercise. Journal of Sports Sciences, 2021, 39, 2859-2868.	1.0	2
7	Neural adaptations to long-term resistance training: evidence for the confounding effect of muscle size on the interpretation of surface electromyography. Journal of Applied Physiology, 2021, 131, 702-715.	1.2	17
8	A flow resistive inspiratory muscle training mask worn during high-intensity interval training does not improve 5Âkm running time-trial performance. European Journal of Applied Physiology, 2021, 121, 183-191.	1.2	1
9	Assessing the Acceptability of a Co-Produced Long COVID Intervention in an Underserved Community in the UK. International Journal of Environmental Research and Public Health, 2021, 18, 13191.	1.2	10
10	Mechanical and morphological determinants of peak power output in elite cyclists. Scandinavian Journal of Medicine and Science in Sports, 2020, 30, 227-237.	1.3	36
11	What makes long-term resistance-trained individuals so strong? A comparison of skeletal muscle morphology, architecture, and joint mechanics. Journal of Applied Physiology, 2020, 128, 1000-1011.	1.2	48
12	Overreaching and overtraining in strength sports and resistance training: A scoping review. Journal of Sports Sciences, 2020, 38, 1897-1912.	1.0	18
13	Neural adaptations after 4 years vs 12 weeks of resistance training vs untrained. Scandinavian Journal of Medicine and Science in Sports, 2019, 29, 348-359.	1.3	42
14	The Contributions of Fiber Atrophy, Fiber Loss, In Situ Specific Force, and Voluntary Activation to Weakness in Sarcopenia. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2018, 73, 1287-1294.	1.7	80
15	Tendinous tissue properties after short―and longâ€ŧerm functional overload: Differences between controls, 12Âweeks and 4Âyears of resistance training. Acta Physiologica, 2018, 222, e13019.	1.8	13
16	Sex differences in muscle morphology of the knee flexors and knee extensors. PLoS ONE, 2018, 13, e0190903.	1.1	34
17	The influence of patellar tendon and muscle–tendon unit stiffness on quadriceps explosive strength in man. Experimental Physiology, 2017, 102, 448-461.	0.9	12
18	Changes in agonist neural drive, hypertrophy and pre-training strength all contribute to the individual strength gains after resistance training. European Journal of Applied Physiology, 2017, 117, 631-640.	1.2	69

#	Article	IF	Citations
19	Reliability of quadriceps surface electromyography measurements is improved by two vs. single site recordings. European Journal of Applied Physiology, 2017, 117, 1085-1094.	1.2	29
20	Muscle size and strength: debunking the "completely separate phenomena―suggestion. European Journal of Applied Physiology, 2017, 117, 1275-1276.	1.2	14
21	Circulating levels of dickkopf-1, osteoprotegerin and sclerostin are higher in old compared with young men and women and positively associated with whole-body bone mineral density in older adults. Osteoporosis International, 2017, 28, 2683-2689.	1.3	27
22	Training-specific functional, neural, and hypertrophic adaptations to explosive-vs. sustained-contraction strength training. Journal of Applied Physiology, 2016, 120, 1364-1373.	1.2	76
23	Age-Related Loss of Muscle Mass, Strength, and Power and Their Association With Mobility in Recreationally-Active Older Adults in the United Kingdom. Journal of Aging and Physical Activity, 2015, 23, 352-360.	0.5	46
24	Greater tibial bone strength in male tennis players than controls in the absence of greater muscle output. Journal of Orthopaedic Translation, 2015, 3, 142-151.	1.9	8
25	Thigh muscle volume in relation to age, sex and femur volume. Age, 2014, 36, 383-393.	3.0	56
26	Effects of age and starting age upon side asymmetry in the arms of veteran tennis players: a cross-sectional study. Osteoporosis International, 2014, 25, 1389-1400.	1.3	53
27	Associations between muscle strength, spirometric pulmonary function and mobility in healthy older adults. Age, 2014, 36, 9667.	3.0	64
28	Knee extensor fatigue resistance of young and older men and women performing sustained and brief intermittent isometric contractions. Muscle and Nerve, 2014, 50, 393-400.	1.0	26
29	Physiological and functional evaluation of healthy young and older men and women: design of the European MyoAge study. Biogerontology, 2013, 14, 325-337.	2.0	50
30	Relationship between ventilatory function and age in master athletes and a sedentary reference population. Age, 2013, 35, 1007-1015.	3.0	39
31	Upper Limb Muscle–Bone Asymmetries and Bone Adaptation in Elite Youth Tennis Players. Medicine and Science in Sports and Exercise, 2013, 45, 1749-1758.	0.2	81