Jesus Alcala-Fdez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5358440/publications.pdf

Version: 2024-02-01

125 papers 12,214 citations

39 h-index 93 g-index

127 all docs

127 does citations

times ranked

127

8948 citing authors

#	Article	IF	CITATIONS
1	Explainable Artificial Intelligence (XAI): Concepts, taxonomies, opportunities and challenges toward responsible AI. Information Fusion, 2020, 58, 82-115.	11.7	3,332
2	A study on the use of non-parametric tests for analyzing the evolutionary algorithms' behaviour: aÂcase study onÂtheÂCEC'2005 Special Session onÂReal Parameter Optimization. Journal of Heuristics, 2009 15, 617-644.	', 1.1	1,454
3	KEEL: a software tool to assess evolutionary algorithms for data mining problems. Soft Computing, 2009, 13, 307-318.	2.1	1,165
4	Data Preprocessing in Data Mining. Intelligent Systems Reference Library, 2015, , .	1.0	541
5	A Survey of Discretization Techniques: Taxonomy and Empirical Analysis in Supervised Learning. IEEE Transactions on Knowledge and Data Engineering, 2013, 25, 734-750.	4.0	389
6	Self-labeled techniques for semi-supervised learning: taxonomy, software and empirical study. Knowledge and Information Systems, 2015, 42, 245-284.	2.1	377
7	Evolutionary Undersampling for Classification with Imbalanced Datasets: Proposals and Taxonomy. Evolutionary Computation, 2009, 17, 275-306.	2.3	312
8	A Fuzzy Association Rule-Based Classification Model for High-Dimensional Problems With Genetic Rule Selection and Lateral Tuning. IEEE Transactions on Fuzzy Systems, 2011, 19, 857-872.	6.5	274
9	A consistency-based procedure to estimate missing pairwise preference values. International Journal of Intelligent Systems, 2008, 23, 155-175.	3.3	251
10	A practical tutorial on bagging and boosting based ensembles for machine learning: Algorithms, software tools, performance study, practical perspectives and opportunities. Information Fusion, 2020, 64, 205-237.	11.7	223
11	A Taxonomy and Experimental Study on Prototype Generation for Nearest Neighbor Classification. IEEE Transactions on Systems, Man and Cybernetics, Part C: Applications and Reviews, 2012, 42, 86-100.	3.3	215
12	KEEL 3.0: An Open Source Software for Multi-Stage Analysis in Data Mining. International Journal of Computational Intelligence Systems, 2017, 10, 1238.	1.6	201
13	On the choice of the best imputation methods for missing values considering three groups of classification methods. Knowledge and Information Systems, 2012, 32, 77-108.	2.1	185
14	A Proposal for the Genetic Lateral Tuning of Linguistic Fuzzy Systems and Its Interaction With Rule Selection. IEEE Transactions on Fuzzy Systems, 2007, 15, 616-635.	6.5	164
15	jFuzzyLogic: a Java Library to Design Fuzzy Logic Controllers According to the Standard for Fuzzy Control Programming. International Journal of Computational Intelligence Systems, 2013, 6, 61.	1.6	157
16	Learning the membership function contexts for mining fuzzy association rules by using genetic algorithms. Fuzzy Sets and Systems, 2009, 160, 905-921.	1.6	154
17	Addressing data complexity for imbalanced data sets: analysis of SMOTE-based oversampling and evolutionary undersampling. Soft Computing, 2011, 15, 1909-1936.	2.1	144
18	Genetics-Based Machine Learning for Rule Induction: State of the Art, Taxonomy, and Comparative Study. IEEE Transactions on Evolutionary Computation, 2010, 14, 913-941.	7.5	137

#	Article	IF	Citations
19	jFuzzyLogic: a robust and flexible Fuzzy-Logic inference system language implementation. , 2012, , .		133
20	Dynamic ensemble selection for multi-class imbalanced datasets. Information Sciences, 2018, 445-446, 22-37.	4.0	119
21	A MULTI-OBJECTIVE GENETIC ALGORITHM FOR TUNING AND RULE SELECTION TO OBTAIN ACCURATE AND COMPACT LINGUISTIC FUZZY RULE-BASED SYSTEMS. International Journal of Uncertainty, Fuzziness and Knowlege-Based Systems, 2007, 15, 539-557.	0.9	109
22	Data discretization: taxonomy and big data challenge. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 2016, 6, 5-21.	4.6	105
23	Genetic learning of accurate and compact fuzzy rule based systems based on the 2-tuples linguistic representation. International Journal of Approximate Reasoning, 2007, 44, 45-64.	1.9	104
24	A Survey of Fuzzy Systems Software: Taxonomy, Current Research Trends, and Prospects. IEEE Transactions on Fuzzy Systems, 2016, 24, 40-56.	6.5	91
25	Transforming big data into smart data: An insight on the use of the kâ€nearest neighbors algorithm to obtain quality data. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 2019, 9, e1289.	4.6	88
26	A New Multiobjective Evolutionary Algorithm for Mining a Reduced Set of Interesting Positive and Negative Quantitative Association Rules. IEEE Transactions on Evolutionary Computation, 2014, 18, 54-69.	7.5	84
27	Hybrid learning models to get the interpretability–accuracy trade-off in fuzzy modeling. Soft Computing, 2006, 10, 717-734.	2.1	82
28	NICGAR: A Niching Genetic Algorithm to mine a diverse set of interesting quantitative association rules. Information Sciences, 2016, 355-356, 208-228.	4.0	71
29	QAR-CIP-NSGA-II: A new multi-objective evolutionary algorithm to mine quantitative association rules. Information Sciences, 2014, 258, 1-28.	4.0	63
30	Evolutionary fuzzy k-nearest neighbors algorithm using interval-valued fuzzy sets. Information Sciences, 2016, 329, 144-163.	4.0	61
31	A tutorial on distance metric learning: Mathematical foundations, algorithms, experimental analysis, prospects and challenges. Neurocomputing, 2021, 425, 300-322.	3.5	61
32	Nearest Neighbor Classification for High-Speed Big Data Streams Using Spark. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2017, 47, 2727-2739.	5.9	60
33	On the use of convolutional neural networks for robust classification of multiple fingerprint captures. International Journal of Intelligent Systems, 2018, 33, 213-230.	3.3	58
34	Local identification of prototypes for genetic learning of accurate TSK fuzzy rule-based systems. International Journal of Intelligent Systems, 2007, 22, 909-941.	3.3	54
35	Imbalance: Oversampling algorithms for imbalanced classification in R. Knowledge-Based Systems, 2018, 161, 329-341.	4.0	53
36	Monotonic classification: An overview on algorithms, performance measures and data sets. Neurocomputing, 2019, 341, 168-182.	3.5	50

#	Article	IF	CITATIONS
37	Improving fuzzy logic controllers obtained by experts: a case study in HVAC systems. Applied Intelligence, 2009, 31, 15-30.	3.3	46
38	Rule Base Reduction and Genetic Tuning of Fuzzy Systems Based on the Linguistic 3-tuples Representation. Soft Computing, 2006, 11, 401-419.	2.1	45
39	Increasing fuzzy rules cooperation based on evolutionary adaptive inference systems. International Journal of Intelligent Systems, 2007, 22, 1035-1064.	3.3	45
40	JFML: A Java Library to Design Fuzzy Logic Systems According to the IEEE Std 1855-2016. IEEE Access, 2018, 6, 54952-54964.	2.6	45
41	eXplainable Artificial Intelligence (XAI) for the identification of biologically relevant gene expression patterns in longitudinal human studies, insights from obesity research. PLoS Computational Biology, 2020, 16, e1007792.	1.5	44
42	Monotonic Random Forest with an Ensemble Pruning Mechanism based on the Degree of Monotonicity. New Generation Computing, 2015, 33, 367-388.	2.5	36
43	Genetic learning of the membership functions for mining fuzzy association rules from low quality data. Information Sciences, 2015, 295, 358-378.	4.0	36
44	Evolutionary Fuzzy Rule-Based Methods for Monotonic Classification. IEEE Transactions on Fuzzy Systems, 2017, 25, 1376-1390.	6.5	36
45	MRQAR: A generic MapReduce framework to discover quantitative association rules in big data problems. Knowledge-Based Systems, 2018, 153, 176-192.	4.0	35
46	Stratified prototype selection based on a steady-state memetic algorithm: a study of scalability. Memetic Computing, 2010, 2, 183-199.	2.7	33
47	Fast and Scalable Approaches to Accelerate the Fuzzy <i>k</i> lownward Neighbors Classifier for Big Data. IEEE Transactions on Fuzzy Systems, 2020, 28, 874-886.	6.5	31
48	A snapshot on nonstandard supervised learning problems: taxonomy, relationships, problem transformations and algorithm adaptations. Progress in Artificial Intelligence, 2019, 8, 1-14.	1.5	29
49	DRCW-ASEG: One-versus-One distance-based relative competence weighting with adaptive synthetic example generation for multi-class imbalanced datasets. Neurocomputing, 2018, 285, 176-187.	3.5	28
50	Analysis of the Effectiveness of the Genetic Algorithms based on Extraction of Association Rules. Fundamenta Informaticae, 2010, 98, 1-14.	0.3	26
51	Guest Editorial Genetic Fuzzy Systems: What's Next? An Introduction to the Special Section. IEEE Transactions on Fuzzy Systems, 2007, 15, 533-535.	6.5	24
52	Prototype selection to improve monotonic nearest neighbor. Engineering Applications of Artificial Intelligence, 2017, 60, 128-135.	4.3	22
53	Financial time series forecasting with a bio-inspired fuzzy model. Expert Systems With Applications, 2012, 39, 12302-12309.	4.4	21
54	Instance reduction for one-class classification. Knowledge and Information Systems, 2019, 59, 601-628.	2.1	21

#	Article	IF	Citations
55	EUSC: A clustering-based surrogate model to accelerate evolutionary undersampling in imbalanced classification. Applied Soft Computing Journal, 2021, 101, 107033.	4.1	21
56	Current prospects on ordinal and monotonic classification. Progress in Artificial Intelligence, 2016, 5, 171-179.	1.5	19
57	Chain based sampling for monotonic imbalanced classification. Information Sciences, 2019, 474, 187-204.	4.0	19
58	Distributed Entropy Minimization Discretizer for Big Data Analysis under Apache Spark., 2015, , .		17
59	Mining fuzzy association rules from low-quality data. Soft Computing, 2012, 16, 883-901.	2.1	16
60	Experimental Study on 164 Algorithms Available in Software Tools for Solving Standard Non-Linear Regression Problems. IEEE Access, 2019, 7, 108916-108939.	2.6	15
61	Omics Approaches in Adipose Tissue and Skeletal Muscle Addressing the Role of Extracellular Matrix in Obesity and Metabolic Dysfunction. International Journal of Molecular Sciences, 2021, 22, 2756.	1.8	15
62	Hybrid laser pointer detection algorithm based on template matching and fuzzy rule-based systems for domotic control inÂrealÂhome environments. Applied Intelligence, 2012, 36, 407-423.	3.3	14
63	Learning weighted linguistic rules to control an autonomous robot. International Journal of Intelligent Systems, 2009, 24, 226-251.	3.3	13
64	Exact fuzzy k-nearest neighbor classification for big datasets., 2017,,.		13
65	Smartdata: Data preprocessing to achieve smart data in R. Neurocomputing, 2019, 360, 1-13.	3.5	13
66	Temporal association rule mining: An overview considering the time variable as an integral or implied component. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 2020, 10, e1367.	4.6	13
67	A case study for learning behaviors in mobile robotics by evolutionary fuzzy systems. Expert Systems With Applications, 2010, 37, 1471-1493.	4.4	12
68	A multi-objective evolutionary algorithm for mining quantitative association rules. , $2011, \ldots$		12
69	From Big to Smart Data: Iterative ensemble filter for noise filtering in Big Data classification. International Journal of Intelligent Systems, 2019, 34, 3260-3274.	3.3	12
70	Statistical analysis of convergence performance throughout the evolutionary search: A case study with SaDE-MMTS and Sa-EPSDE-MMTS. , $2013, \ldots$		11
71	From Big Data to Smart Data with the K-Nearest Neighbours Algorithm. , 2016, , .		11
72	Py4JFML: A Python wrapper for using the IEEE Std 1855-2016 through JFML., 2019,,.		11

#	Article	IF	Citations
73	Genetic Learning of Membership Functions for Mining Fuzzy Association Rules. IEEE International Conference on Fuzzy Systems, 2007, , .	0.0	10
74	A Multi-Objective Evolutionary Algorithm for Rule Selection and Tuning on Fuzzy Rule-Based Systems. IEEE International Conference on Fuzzy Systems, 2007, , .	0.0	10
75	KEEL: A data mining software tool integrating genetic fuzzy systems. , 2008, , .		10
76	Fuzzy k-nearest neighbors with monotonicity constraints: Moving towards the robustness of monotonic noise. Neurocomputing, 2021, 439, 106-121.	3.5	10
77	Fuzzy-genetic optimization of the parameters of a low cost system for the optical measurement of several dimensions of vehicles. Soft Computing, 2008, 12, 751-764.	2.1	9
78	A new fingram-based software tool for visual representation and analysis of fuzzy association rules. , 2013, , .		9
79	Special Issue on Software Tools for Soft Computing. International Journal of Computational Intelligence Systems, 2013, 6, 1.	1.6	9
80	MoNGEL: monotonic nested generalized exemplar learning. Pattern Analysis and Applications, 2017, 20, 441-452.	3.1	9
81	DILS: Constrained clustering through dual iterative local search. Computers and Operations Research, 2020, 121, 104979.	2.4	9
82	Label noise filtering techniques to improve monotonic classification. Neurocomputing, 2019, 353, 83-95.	3.5	8
83	ProLSFEO-LDL: Prototype Selection and Label- Specific Feature Evolutionary Optimization for Label Distribution Learning. Applied Sciences (Switzerland), 2020, 10, 3089.	1.3	8
84	Mining high average-utility sequential rules to identify high-utility gene expression sequences in longitudinal human studies. Expert Systems With Applications, 2022, 193, 116411.	4.4	8
85	A First Approach to Nearest Hyperrectangle Selection by Evolutionary Algorithms. , 2009, , .		7
86	Analyzing fuzzy association rules with Fingrams in KEEL. , 2014, , .		7
87	Synthetic Sample Generation for Label Distribution Learning. Information Sciences, 2021, 544, 197-213.	4.0	7
88	Addressing Data-Complexity for Imbalanced Data-Sets: A Preliminary Study on the Use of Preprocessing for C4.5., 2009,,.		6
89	Genetic tuning of a laser pointer environment control device system for handicapped people with fuzzy systems. , $2010, \ldots$		6
90	Ordinal regression with explainable distance metric learning based on ordered sequences. Machine Learning, 2021, 110, 2729-2762.	3.4	6

#	Article	IF	Citations
91	Interpretability analysis of fuzzy association rules supported by fingrams., 2013,,.		6
92	A preliminary study on the use of differential evolution for adjusting the position of examples in nearest neighbor classification. , 2010, , .		5
93	Special issue on Hybrid Fuzzy Models. International Journal of Hybrid Intelligent Systems, 2010, 7, 1-1.	0.9	5
94	Evolutionary learning of a laser pointer detection fuzzy system for an environment control system. , 2011, , .		5
95	Evolutionary data mining and applications: A revision on the most cited papers from the last 10 years (2007–2017). Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 2018, 8, e1239.	4.6	5
96	Enhancing instance-level constrained clustering through differential evolution. Applied Soft Computing Journal, 2021, 108, 107435.	4.1	5
97	ME-MEOA/D		

#	Article	lF	CITATIONS
109	Meta-Fuzzy Items for Fuzzy Association Rules. , 2021, , .		2
110	Data Reduction for Big Data. , 2020, , 81-99.		2
111	A Data Mining Software Package Including Data Preparation and Reduction: KEEL. Intelligent Systems Reference Library, 2015, , 285-313.	1.0	2
112	A First Approach on Big Data Missing Values Imputation. , 2019, , .		2
113	Fuzzy Autoregressive Rules: Towards Linguistic Time Series Modeling. Econometric Reviews, 2011, 30, 646-668.	0.5	1
114	Special Issue on Computational Intelligence Software Guest Editorial. IEEE Computational Intelligence Magazine, 2016, 11, 13-14.	3.4	1
115	Evaluation of the Predictive Ability, Environmental Regulation and Pharmacogenetics Utility of a BMI-Predisposing Genetic Risk Score during Childhood and Puberty. Journal of Clinical Medicine, 2020, 9, 1705.	1.0	1
116	Distance Metric Learning with Prototype Selection for Imbalanced Classification. Lecture Notes in Computer Science, 2021, , 391-402.	1.0	1
117	SOUL: Scala Oversampling and Undersampling Library for imbalance classification. SoftwareX, 2021, 15, 100767.	1.2	1
118	Improving constrained clustering via decomposition-based multiobjective optimization with memetic elitism. , 2020, , .		1
119	New open source modules in KEEL to analyze and export fuzzy association rules. , 2016, , .		O
120	Agglomerative Constrained Clustering Through Similarity and Distance Recalculation. Lecture Notes in Computer Science, 2020, , 424-436.	1.0	0
121	3SHACC: Three stages hybrid agglomerative constrained clustering. Neurocomputing, 2022, 490, 441-461.	3. 5	O
122	Title is missing!. , 2020, 16, e1007792.		0
123	Title is missing!. , 2020, 16, e1007792.		0
124	Title is missing!. , 2020, 16, e1007792.		0
125	Title is missing!. , 2020, 16, e1007792.		O