
Bharath K Mani

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5357968/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A closer look at alcoholâ€induced changes in the ghrelin system: novel insights from preclinical and clinical data. Addiction Biology, 2022, 27, e13033.	2.6	17
2	Growth hormone secretagogue receptor signaling in the supramammillary nucleus targets nitric oxide-producing neurons and controls recognition memory in mice. Psychoneuroendocrinology, 2022, 139, 105716.	2.7	5
3	High Coexpression of the Ghrelin and LEAP2 Receptor GHSR With Pancreatic Polypeptide in Mouse and Human Islets. Endocrinology, 2021, 162, .	2.8	14
4	Ghrelin cell–expressed insulin receptors mediate meal- and obesity-induced declines in plasma ghrelin. JCI Insight, 2021, 6, .	5.0	10
5	LEAP2 deletion in mice enhances ghrelin's actions as an orexigen and growth hormone secretagogue. Molecular Metabolism, 2021, 53, 101327.	6.5	37
6	Combined Loss of Ghrelin Receptor and Cannabinoid CB1 Receptor in Mice Decreases Survival but does not Additively Reduce Body Weight or Eating. Neuroscience, 2020, 447, 53-62.	2.3	3
7	Acyl-ghrelin Is Permissive for the Normal Counterregulatory Response to Insulin-Induced Hypoglycemia. Diabetes, 2020, 69, 228-237.	0.6	17
8	Ghrelin Protects Against Insulin-Induced Hypoglycemia in a Mouse Model of Type 1 Diabetes Mellitus. Frontiers in Endocrinology, 2020, 11, 606.	3.5	6
9	Lowering oxidative stress in ghrelin cells stimulates ghrelin secretion. American Journal of Physiology - Endocrinology and Metabolism, 2020, 319, E330-E337.	3.5	9
10	Metabolic insights from a GHSR-A203E mutant mouse model. Molecular Metabolism, 2020, 39, 101004.	6.5	28
11	254-LB: Characterization of Ghrelin Receptor Expression in Mouse Islets Reveals Pancreatic Polypeptide Cells as a Key Ghrelin Target. Diabetes, 2020, 69, 254-LB.	0.6	Ο
12	1892-P: Meal- and Glucose-Induced Suppression of Ghrelin Release Is Mediated Primarily by Ghrelin Cell-Expressed Insulin Receptors. Diabetes, 2020, 69, 1892-P.	0.6	0
13	Ghrelin's Relationship to Blood Glucose. Endocrinology, 2019, 160, 1247-1261.	2.8	61
14	β1-adrenergic receptors mediate plasma acyl-ghrelin elevation and depressive-like behavior induced by chronic psychosocial stress. Neuropsychopharmacology, 2019, 44, 1319-1327.	5.4	23
15	LEAP2 changes with body mass and food intake in humans and mice. Journal of Clinical Investigation, 2019, 129, 3909-3923.	8.2	130
16	Ghrelin mediates exercise endurance and the feeding response post-exercise. Molecular Metabolism, 2018, 9, 114-130.	6.5	34
17	Ghrelin Receptor Agonist Rescues Excess Neonatal Mortality in a Prader-Willi Syndrome Mouse Model. Endocrinology, 2018, 159, 4006-4022.	2.8	20
18	Hypoglycemic Effect of Combined Ghrelin and Glucagon Receptor Blockade. Diabetes, 2017, 66, 1847-1857.	0.6	27

Bharath K Mani

#	Article	IF	CITATIONS
19	Ghrelin as a Survival Hormone. Trends in Endocrinology and Metabolism, 2017, 28, 843-854.	7.1	100
20	The role of ghrelin-responsive mediobasal hypothalamic neurons in mediating feeding responses to fasting. Molecular Metabolism, 2017, 6, 882-896.	6.5	46
21	Kv7.5 Potassium Channel Subunits are the Primary Target for PKA-Dependent Enhancement of Vascular Smooth Muscle Kv7 Currents. Biophysical Journal, 2016, 110, 607a.	0.5	Ο
22	Kv7.5 Potassium Channel Subunits Are the Primary Targets for PKA-Dependent Enhancement of Vascular Smooth Muscle Kv7 Currents. Molecular Pharmacology, 2016, 89, 323-334.	2.3	56
23	Kv7 Potassium Channels as Therapeutic Targets in Cerebral Vasospasm. , 2016, , 191-214.		1
24	β1-Adrenergic receptor deficiency in ghrelin-expressing cells causes hypoglycemia in susceptible individuals. Journal of Clinical Investigation, 2016, 126, 3467-3478.	8.2	51
25	A Strong Stomach for Somatostatin. Endocrinology, 2015, 156, 3876-3879.	2.8	11
26	Novel Regulator of Acylated Ghrelin, CF801, Reduces Weight Gain, Rebound Feeding after a Fast, and Adiposity in Mice. Frontiers in Endocrinology, 2015, 6, 144.	3.5	10
27	Role of Calcium and EPAC in Norepinephrine-Induced Ghrelin Secretion. Endocrinology, 2014, 155, 98-107.	2.8	19
28	Altered ghrelin secretion in mice in response to diet-induced obesity and Roux-en-Y gastric bypass. Molecular Metabolism, 2014, 3, 717-730.	6.5	42
29	Neuroanatomical characterization of a growth hormone secretagogue receptorâ€green fluorescent protein reporter mouse. Journal of Comparative Neurology, 2014, 522, 3644-3666.	1.6	131
30	An eGFP-expressing subpopulation of growth hormone secretagogue receptor cells are distinct from kisspeptin, tyrosine hydroxylase, and RFamide-related peptide neurons in mice. Peptides, 2013, 47, 45-53.	2.4	24
31	Vascular KCNQ (Kv7) Potassium Channels as Common Signaling Intermediates and Therapeutic Targets in Cerebral Vasospasm. Journal of Cardiovascular Pharmacology, 2013, 61, 51-62.	1.9	41
32	Exploring Arterial Smooth Muscle Kv7 Potassium Channel Function using Patch Clamp Electrophysiology and Pressure Myography. Journal of Visualized Experiments, 2012, , e4263.	0.3	5
33	Vascular KCNQ channels in humans: the subâ€ŧhreshold brake that regulates vascular tone?. British Journal of Pharmacology, 2011, 162, 38-41.	5.4	4
34	Activation of vascular KCNQ (K _v 7) potassium channels reverses spasmogen-induced constrictor responses in rat basilar artery. British Journal of Pharmacology, 2011, 164, 237-249.	5.4	42
35	Reply to Chadha etâ \in fal British Journal of Pharmacology, 2011, 164, 252-253.	5.4	1
36	Vascular KCNQ Potassium Channels as Therapeutic Targets in Cerebral Vasospasm. FASEB Journal, 2010, 24, 770.5.	0.5	0

Bharath K Mani

#	Article	IF	CITATIONS
37	Novel Actions of Nonsteroidal Anti-Inflammatory Drugs on Vascular Ion Channels: Accounting for Cardiovascular Side Effects and Identifying New Therapeutic Applications. Molecular and Cellular Pharmacology, 2010, 2, 15-19.	1.7	28
38	Differential Effects of Selective Cyclooxygenase-2 Inhibitors on Vascular Smooth Muscle Ion Channels May Account for Differences in Cardiovascular Risk Profiles. Molecular Pharmacology, 2009, 76, 1053-1061.	2.3	83
39	Opposite regulation of KCNQ5 and TRPC6 channels contributes to vasopressin-stimulated calcium spiking responses in A7r5 vascular smooth muscle cells. Cell Calcium, 2009, 45, 400-411.	2.4	33
40	Diacylglycerol â€induced suppression of vascular KCNQ channels â€A common mechanism of action of vasoconstrictor hormones?. FASEB Journal, 2009, 23, 579.1.	0.5	0
41	Contribution of Kv7.5 potassium channels inhibition and TRPC6 nonâ€selective channels activation in AVP induced calcium oscillations in A7r5 smooth muscle cells. FASEB Journal, 2008, 22, 912.33.	0.5	0