
Gonçalo C Rodrigues

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5357889/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Implementing the dual crop coefficient approach in interactive software. 1. Background and computational strategy. Agricultural Water Management, 2012, 103, 8-24.	5.6	147
2	Partitioning evapotranspiration, yield prediction and economic returns of maize under various irrigation management strategies. Agricultural Water Management, 2014, 135, 27-39.	5.6	109
3	Assessing economic impacts of deficit irrigation as related to water productivity and water costs. Biosystems Engineering, 2009, 103, 536-551.	4.3	108
4	Implementing the dual crop coefficient approach in interactive software: 2. Model testing. Agricultural Water Management, 2012, 103, 62-77.	5.6	93
5	Modeling malt barley water use and evapotranspiration partitioning in two contrasting rainfall years. Assessing AquaCrop and SIMDualKc models. Agricultural Water Management, 2015, 159, 239-254.	5.6	81
6	The dual crop coefficient approach using a density factor to simulate the evapotranspiration of a peach orchard: SIMDualKc model versus eddy covariance measurements. Irrigation Science, 2012, 30, 115-126.	2.8	79
7	Comparing sprinkler and drip irrigation systems for full and deficit irrigated maize using multicriteria analysis and simulation modelling: Ranking for water saving vs. farm economic returns. Agricultural Water Management, 2013, 126, 85-96.	5.6	63
8	Dual crop coefficients for maize in southern Brazil: Model testing for sprinkler and drip irrigation and mulched soil. Biosystems Engineering, 2013, 115, 291-310.	4.3	60
9	Using the FAO dual crop coefficient approach to model water use and productivity of processing pea (Pisum sativum L.) as influenced by irrigation strategies. Agricultural Water Management, 2017, 189, 5-18.	5.6	26
10	Assessing yield, water productivity and farm economic returns of malt barley as influenced by the sowing dates and supplemental irrigation. Agricultural Water Management, 2017, 179, 132-143.	5.6	25
11	Evaluation of NASA POWER Reanalysis Products to Estimate Daily Weather Variables in a Hot Summer Mediterranean Climate. Agronomy, 2021, 11, 1207.	3.0	24
12	Climate Change Impacts on Pinus pinea L. Silvicultural System for Cone Production and Ways to Contour Those Impacts: A Review Complemented with Data from Permanent Plots. Forests, 2019, 10, 169.	2.1	22
13	Relating energy performance and water productivity of sprinkler irrigated maize, wheat and sunflower under limited water availability. Biosystems Engineering, 2010, 106, 195-204.	4.3	21
14	The impact of the winery's wastewater treatment system on the winery water footprint. Water Science and Technology, 2019, 80, 1823-1831.	2.5	17
15	Water Footprint Sustainability as a Tool to Address Climate Change in the Wine Sector: A Methodological Approach Applied to a Portuguese Case Study. Atmosphere, 2020, 11, 934.	2.3	16
16	Estimation of Reference Evapotranspiration during the Irrigation Season Using Nine Temperature-Based Methods in a Hot-Summer Mediterranean Climate. Agriculture (Switzerland), 2021, 11, 124.	3.1	16
17	Estimation of Daily Reference Evapotranspiration from NASA POWER Reanalysis Products in a Hot Summer Mediterranean Climate. Agronomy, 2021, 11, 2077.	3.0	11
18	Modelling economic impacts of deficit irrigated maize in Brazil with consideration of different rainfall regimes. Biosystems Engineering, 2013, 116, 97-110.	4.3	7

#	Article	IF	CITATIONS
19	A Simple Procedure to Estimate Reference Evapotranspiration during the Irrigation Season in a Hot-Summer Mediterranean Climate. Sustainability, 2021, 13, 349.	3.2	6
20	Determining Farmers' Willingness to Pay for Irrigation Water in the Alentejo Region (Southern) Tj ETQq0 0 0 i	rgBT/Over	lock 10 Tf 50

21	A Simple Application for Computing Reference Evapotranspiration with Various Levels of Data Availability—ETo Tool. Agronomy, 2021, 11, 2203.	3.0	4
22	VIABILIDADE ECONÔMICA DA IRRIGAÇÃO DEFICITÃRIA EM MILHO IRRIGADO POR GOTEJAMENTO. Irriga, 2016, 1, 150.	0.1	3
23	THE DUAL CROP COEFFICIENT APPROACH: TESTING THE SIMDUALKC MODEL WITH PEACH ORCHARD EVAPOTRANSPIRATION EDDY COVARIANCE MEASUREMENTS. Acta Horticulturae, 2011, , 181-188.	0.2	2