
Francois Beguin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5357860/publications.pdf Version: 2024-02-01

FRANCOIS RECLIN

#	Article	IF	CITATIONS
1	Carbon materials for the electrochemical storage of energy in capacitors. Carbon, 2001, 39, 937-950.	10.3	4,099
2	Carbons and Electrolytes for Advanced Supercapacitors. Advanced Materials, 2014, 26, 2219-2251.	21.0	2,152
3	Electrochemical storage of energy in carbon nanotubes and nanostructured carbons. Carbon, 2002, 40, 1775-1787.	10.3	1,011
4	Supercapacitors based on conducting polymers/nanotubes composites. Journal of Power Sources, 2006, 153, 413-418.	7.8	885
5	Relationship between the nanoporous texture of activated carbons and their capacitance properties in different electrolytes. Carbon, 2006, 44, 2498-2507.	10.3	878
6	A High-Performance Carbon for Supercapacitors Obtained by Carbonization of a Seaweed Biopolymer. Advanced Materials, 2006, 18, 1877-1882.	21.0	786
7	KOH and NaOH activation mechanisms of multiwalled carbon nanotubes with different structural organisation. Carbon, 2005, 43, 786-795.	10.3	727
8	Determination of the specific capacitance of conducting polymer/nanotubes composite electrodes using different cell configurations. Electrochimica Acta, 2005, 50, 2499-2506.	5.2	718
9	Optimisation of an asymmetric manganese oxide/activated carbon capacitor working at 2V in aqueous medium. Journal of Power Sources, 2006, 153, 183-190.	7.8	687
10	Electrochemical energy storage in ordered porous carbon materials. Carbon, 2005, 43, 1293-1302.	10.3	658
11	Supercapacitor electrodes from multiwalled carbon nanotubes. Applied Physics Letters, 2000, 77, 2421-2423.	3.3	652
12	Tuning Carbon Materials for Supercapacitors by Direct Pyrolysis of Seaweeds. Advanced Functional Materials, 2009, 19, 1032-1039.	14.9	566
13	Appropriate methods for evaluating the efficiency and capacitive behavior of different types of supercapacitors. Electrochemistry Communications, 2015, 60, 21-25.	4.7	556
14	The Large Electrochemical Capacitance of Microporous Doped Carbon Obtained by Using a Zeolite Template. Advanced Functional Materials, 2007, 17, 1828-1836.	14.9	492
15	Supercapacitors from nanotubes/polypyrrole composites. Chemical Physics Letters, 2001, 347, 36-40.	2.6	488
16	High voltage supercapacitor built with seaweed carbons in neutral aqueous electrolyte. Carbon, 2010, 48, 4351-4361.	10.3	483
17	Coalescence of Single-Walled Carbon Nanotubes. Science, 2000, 288, 1226-1229.	12.6	469
18	Reinforcement of Polymers with Carbon Nanotubes:Â The Role of Nanotube Surface Area. Nano Letters, 2004, 4, 353-356.	9.1	456

#	Article	IF	CITATIONS
19	Elastic Modulus of Ordered and Disordered Multiwalled Carbon Nanotubes. Advanced Materials, 1999, 11, 161-165.	21.0	454
20	Electrochemical storage of lithium in multiwalled carbon nanotubes. Carbon, 1999, 37, 61-69.	10.3	428
21	High-energy density graphite/AC capacitor in organic electrolyte. Journal of Power Sources, 2008, 177, 643-651.	7.8	428
22	A symmetric carbon/carbon supercapacitor operating at 1.6V by using a neutral aqueous solution. Electrochemistry Communications, 2010, 12, 1275-1278.	4.7	403
23	Carbon aerogels, cryogels and xerogels: Influence of the drying method on the textural properties of porous carbon materials. Carbon, 2005, 43, 2481-2494.	10.3	396
24	Performance of Manganese Oxide/CNTs Composites as Electrode Materials for Electrochemical Capacitors. Journal of the Electrochemical Society, 2005, 152, A229.	2.9	361
25	Causes of supercapacitors ageing in organic electrolyte. Journal of Power Sources, 2007, 171, 1046-1053.	7.8	348
26	High-voltage asymmetric supercapacitors operating in aqueous electrolyte. Applied Physics A: Materials Science and Processing, 2006, 82, 567-573.	2.3	339
27	High power supercapacitors using polyacrylonitrile-based carbon nanofiber paper. Carbon, 2009, 47, 2984-2992.	10.3	338
28	Synthesis and characterization of carbon nanotubes–TiO2 nanocomposites. Carbon, 2004, 42, 1147-1151.	10.3	324
29	Nanotubular materials for supercapacitors. Journal of Power Sources, 2001, 97-98, 822-825.	7.8	317
30	Optimisation of supercapacitors using carbons with controlled nanotexture and nitrogen content. Electrochimica Acta, 2006, 51, 2209-2214.	5.2	308
31	Towards the mechanism of electrochemical hydrogen storage in nanostructured carbon materials. Applied Physics A: Materials Science and Processing, 2004, 78, 981-987.	2.3	299
32	A Self-Supporting Electrode for Supercapacitors Prepared by One-Step Pyrolysis of Carbon Nanotube/Polyacrylonitrile Blends. Advanced Materials, 2005, 17, 2380-2384.	21.0	298
33	Exploring the large voltage range of carbon/carbon supercapacitors in aqueous lithium sulfate electrolyte. Energy and Environmental Science, 2012, 5, 9611.	30.8	297
34	Carbon/carbon supercapacitors. Journal of Energy Chemistry, 2013, 22, 226-240.	12.9	275
35	Enhanced capacitance of carbon nanotubes through chemical activation. Chemical Physics Letters, 2002, 361, 35-41.	2.6	267
36	Adjustment of electrodes potential window in an asymmetric carbon/MnO2 supercapacitor. Journal of Power Sources, 2011, 196, 580-586.	7.8	264

#	Article	IF	CITATIONS
37	Supercapacitor based on activated carbon and polyethylene oxide–KOH–H2O polymer electrolyte. Electrochimica Acta, 2001, 46, 2777-2780.	5.2	248
38	Structural Defects Play a Major Role in the Acute Lung Toxicity of Multiwall Carbon Nanotubes: Toxicological Aspects. Chemical Research in Toxicology, 2008, 21, 1698-1705.	3.3	246
39	Fluorination of carbon nanotubes. Carbon, 1997, 35, 723-728.	10.3	231
40	Safe and recyclable lithium-ion capacitors using sacrificial organic lithium salt. Nature Materials, 2018, 17, 167-173.	27.5	229
41	Capacitance properties of ordered porous carbon materials prepared by a templating procedure. Journal of Physics and Chemistry of Solids, 2004, 65, 287-293.	4.0	218
42	Carbon electrodes for capacitive technologies. Energy Storage Materials, 2019, 16, 126-145.	18.0	214
43	Structural Defects Play a Major Role in the Acute Lung Toxicity of Multiwall Carbon Nanotubes: Physicochemical Aspects. Chemical Research in Toxicology, 2008, 21, 1690-1697.	3.3	210
44	Exploring electrolyte organization in supercapacitor electrodes with solid-state NMR. Nature Materials, 2013, 12, 351-358.	27.5	210
45	In vitro studies of carbon nanotubes biocompatibility. Carbon, 2006, 44, 1106-1111.	10.3	206
46	A new type of high energy asymmetric capacitor with nanoporous carbon electrodes in aqueous electrolyte. Journal of Power Sources, 2010, 195, 4234-4241.	7.8	203
47	Surface functionality and porosity of activated carbons obtained from chemical activation of wood. Carbon, 2000, 38, 669-674.	10.3	193
48	Mechanical properties of multiwall carbon nanotubes/epoxy composites: influence of network morphology. Carbon, 2004, 42, 1027-1030.	10.3	172
49	Effects of thermal treatment of activated carbon on the electrochemical behaviour in supercapacitors. Electrochimica Acta, 2007, 52, 4969-4973.	5.2	172
50	Supercapacitor electrodes from new ordered porous carbon materials obtained by a templating procedure. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2004, 108, 148-155.	3.5	168
51	Vanadium nitride/carbon nanotube nanocomposites as electrodes for supercapacitors. Journal of Materials Chemistry, 2011, 21, 13268.	6.7	167
52	The HSAB concept as a means to interpret the adsorption of metal ions onto activated carbons. Applied Surface Science, 2004, 228, 84-92.	6.1	164
53	Effect of binder on the performance of carbon/carbon symmetric capacitors in salt aqueous electrolyte. Electrochimica Acta, 2014, 140, 132-138.	5.2	152
54	Fullerene core star-like polymers—1. Preparation from fullerenes and monoazidopolyethers. European Polymer Journal, 1998, 34, 905-915.	5.4	145

#	Article	IF	CITATIONS
55	Carbons with narrow pore size distribution prepared by simultaneous carbonization and self-activation of tobacco stems and their application to supercapacitors. Carbon, 2015, 81, 148-157.	10.3	144
56	Factors contributing to ageing of high voltage carbon/carbon supercapacitors in salt aqueous electrolyte. Journal of Applied Electrochemistry, 2014, 44, 475-480.	2.9	136
57	Triethylammonium bis(tetrafluoromethylsulfonyl)amide protic ionic liquid as an electrolyte for electrical double-layer capacitors. Physical Chemistry Chemical Physics, 2012, 14, 8199.	2.8	126
58	Influence of the atmosphere in the chemical activation of wood by phosphoric acid. Carbon, 1998, 36, 306-309.	10.3	125
59	Nanotubular materials as electrodes for supercapacitors. Fuel Processing Technology, 2002, 77-78, 213-219.	7.2	125
60	Carbon nanotubes with Pt–Ru catalyst for methanol fuel cell. Electrochemistry Communications, 2006, 8, 129-132.	4.7	123
61	Unusual energy enhancement in carbon-based electrochemical capacitors. Journal of Materials Chemistry, 2012, 22, 24213.	6.7	115
62	Correlation of the irreversible lithium capacity with the active surface area of modified carbons. Carbon, 2005, 43, 2160-2167.	10.3	112
63	Effect of accelerated ageing on the performance of high voltage carbon/carbon electrochemical capacitors in salt aqueous electrolyte. Electrochimica Acta, 2014, 130, 344-350.	5.2	112
64	The first in situ 7Li nuclear magnetic resonance study of lithium insertion in hard-carbon anode materials for Li-ion batteries. Journal of Chemical Physics, 2003, 118, 6038-6045.	3.0	111
65	High surface area carbon nanotubes prepared by chemical activation. Carbon, 2002, 40, 1614-1617.	10.3	107
66	Saturation of subnanometer pores in an electric double-layer capacitor. Electrochemistry Communications, 2009, 11, 554-556.	4.7	107
67	Strategies to Improve the Performance of Carbon/Carbon Capacitors in Salt Aqueous Electrolytes. Journal of the Electrochemical Society, 2015, 162, A5148-A5157.	2.9	103
68	Coalescence of single-walled carbon nanotubes and formation of multi-walled carbon nanotubes under high-temperature treatments. Carbon, 2002, 40, 1765-1773.	10.3	102
69	Fabrication of network films of conducting polymer-linked polyoxometallate-stabilized carbon nanostructures. Electrochimica Acta, 2006, 51, 2373-2379.	5.2	101
70	Electrochemical performance of a hybrid lithium-ion capacitor with a graphite anode preloaded from lithium bis(trifluoromethane)sulfonimide-based electrolyte. Electrochimica Acta, 2012, 86, 282-286.	5.2	97
71	State of hydrogen electrochemically stored using nanoporous carbons as negative electrode materials in an aqueous medium. Carbon, 2006, 44, 2392-2398.	10.3	96
72	Electrochemical insertion of lithium in catalytic multi-walled carbon nanotubes. Journal of Power Sources, 1999, 81-82, 317-322.	7.8	89

#	Article	IF	CITATIONS
73	In Situ 7Li-Nuclear Magnetic Resonance Observation of Reversible Lithium Insertion into Disordered Carbons. Electrochemical and Solid-State Letters, 2003, 6, A225.	2.2	88
74	Enhancement of Reversible Hydrogen Capacity into Activated Carbon through Water Electrolysis. Electrochemical and Solid-State Letters, 2001, 4, A27.	2.2	84
75	Mechanism of adsorption and electrosorption of bentazone on activated carbon cloth in aqueous solutions. Water Research, 2007, 41, 3372-3380.	11.3	84
76	Supercapacitors: Carbons and Electrolytes for Advanced Supercapacitors (Adv. Mater. 14/2014). Advanced Materials, 2014, 26, 2283-2283.	21.0	81
77	Polarization-induced distortion of ions in the pores of carbon electrodes for electrochemical capacitors. Carbon, 2009, 47, 3158-3166.	10.3	79
78	Carbon Nanotubes as Nanotexturing Agents for High Power Supercapacitors Based on Seaweed Carbons. ChemSusChem, 2011, 4, 943-949.	6.8	79
79	Lithium rhenium(<scp>vii</scp>) oxide as a novel material for graphite pre-lithiation in high performance lithium-ion capacitors. Journal of Materials Chemistry A, 2016, 4, 12609-12615.	10.3	77
80	Pseudo-capacitance of nanoporous carbons in pyrrolidinium-based protic ionic liquids. Electrochemistry Communications, 2010, 12, 414-417.	4.7	68
81	The reversible intercalation of tetrahydrofuran in some graphite-alkali metal lamellar compounds. Materials Science and Engineering, 1979, 40, 167-173.	0.1	67
82	Effect of various porous nanotextures on the reversible electrochemical sorption of hydrogen in activated carbons. Electrochimica Acta, 2006, 51, 2161-2167.	5.2	67
83	High Yield of Pure Multiwalled Carbon Nanotubes from the Catalytic Decomposition of Acetylene on in Situ Formed Cobalt Nanoparticles. Journal of Nanoscience and Nanotechnology, 2002, 2, 481-484.	0.9	66
84	Catalytically Grown Carbon Nanotubes of Small Diameter Have a High Young's Modulus. Nano Letters, 2005, 5, 2074-2077.	9.1	65
85	Influence of chemical modification of anthracite on the porosity of the resulting activated carbons. Carbon, 2002, 40, 1287-1294.	10.3	64
86	The first in situ 7Li NMR study of the reversible lithium insertion mechanism in disorganised carbons. Journal of Physics and Chemistry of Solids, 2004, 65, 245-251.	4.0	64
87	Structural and electrochemical characterisation of nitrogen enriched carbons produced by the co-pyrolysis of coal-tar pitch with polyacrylonitrile. Electrochimica Acta, 2004, 49, 423-432.	5.2	64
88	Solvent-free ionic liquids as in situ probes for assessing the effect of ion size on the performance of electrical double layer capacitors. Carbon, 2006, 44, 3126-3130.	10.3	62
89	High voltage AC/AC electrochemical capacitor operating at low temperature in salt aqueous electrolyte. Journal of Power Sources, 2016, 318, 235-241.	7.8	62
90	Synthesis of high quality multi-walled carbon nanotubes from the decomposition of acetylene on iron-group metal catalysts supported on MgO. Carbon, 2002, 40, 965-969.	10.3	61

#	Article	IF	CITATIONS
91	Electrochemical storage of hydrogen in activated carbons. Fuel Processing Technology, 2002, 77-78, 415-421.	7.2	59
92	Thermodynamic properties of benzene adsorbed in activated carbons and multi-walled carbon nanotubes. Chemical Physics Letters, 2006, 421, 409-414.	2.6	59
93	In situ 7Li NMR during lithium electrochemical insertion into graphite and a carbon/carbon composite. Journal of Physics and Chemistry of Solids, 2006, 67, 1228-1232.	4.0	59
94	Lithium interaction with carbon nanotubes. Synthetic Metals, 1997, 88, 89-93.	3.9	57
95	Self-buffered pH at carbon surfaces in aqueous supercapacitors. Carbon, 2018, 129, 758-765.	10.3	56
96	Textural and electrochemical properties of carbon replica obtained from styryl organo-modified layered double hydroxide. Journal of Materials Chemistry, 2006, 16, 2074-2081.	6.7	54
97	Redox active electrolytes in carbon/carbon electrochemical capacitors. Current Opinion in Electrochemistry, 2018, 9, 95-105.	4.8	52
98	Investigation of methoxypropionitrile as co-solvent for ethylene carbonate based electrolyte in supercapacitors. A safe and wide temperature range electrolyte. Electrochimica Acta, 2013, 93, 1-7.	5.2	51
99	Ammonia Treatment of Activated Carbon Powders for Supercapacitor Electrode Application. Journal of the Electrochemical Society, 2014, 161, A568-A575.	2.9	51
100	Single, binary, and mixture adsorption of nine organic contaminants onto a microporous and a microporous/mesoporous activated carbon cloth. Microporous and Mesoporous Materials, 2016, 234, 24-34.	4.4	50
101	Confinement of Symmetric Tetraalkylammonium Ions in Nanoporous Carbon Electrodes of Electric Double-Layer Capacitors. Journal of Physical Chemistry C, 2009, 113, 13443-13449.	3.1	49
102	Optimizing the performance of supercapacitors based on carbon electrodes and protic ionic liquids as electrolytes. Electrochimica Acta, 2013, 108, 361-368.	5.2	49
103	Sustainable AC/AC hybrid electrochemical capacitors in aqueous electrolyte approaching the performance of organic systems. Journal of Power Sources, 2016, 326, 652-659.	7.8	48
104	Low-frequency Raman modes in Cs- and Rb-doped single wall carbon nanotubes. Chemical Physics Letters, 2001, 339, 305-310.	2.6	47
105	A better understanding of the irreversible lithium insertion mechanisms in disordered carbons. Journal of Physics and Chemistry of Solids, 2004, 65, 211-217.	4.0	47
106	Safe and performant electrolytes for supercapacitor. Investigation of esters/carbonate mixtures. Journal of Power Sources, 2013, 239, 217-224.	7.8	47
107	New insights on electrochemical hydrogen storage in nanoporous carbons by in situ Raman spectroscopy. Carbon, 2014, 69, 401-408.	10.3	47
108	Change of self-discharge mechanism as a fast tool for estimating long-term stability of ionic liquid based supercapacitors. Journal of Power Sources, 2018, 396, 220-229.	7.8	47

#	Article	IF	CITATIONS
109	13CNMR evidence for dynamics of nanotubes in ropes. Physical Review B, 2001, 63, .	3.2	45
110	Sustainable Carbon/Carbon Supercapacitors Operating Down to â^'40 °C in Aqueous Electrolyte Made with Cholinium Salt. ChemSusChem, 2018, 11, 975-984.	6.8	45
111	Amphiphilic derivatives of fullerenes formed by polymer modification. Journal of the Chemical Society Chemical Communications, 1993, , 1725.	2.0	44
112	Influence of electrolyte ion–solvent interactions on the performances of supercapacitors porous carbon electrodes. Journal of Power Sources, 2014, 263, 130-140.	7.8	44
113	High performance hybrid sodium-ion capacitor with tin phosphide used as battery-type negative electrode. Energy Storage Materials, 2019, 22, 200-206.	18.0	44
114	Use of sacrificial lithium nickel oxide for loading graphitic anode in Li-ion capacitors. Electrochimica Acta, 2016, 206, 440-445.	5.2	43
115	Elastic modulus of multi-walled carbon nanotubes produced by catalytic chemical vapour deposition. Applied Physics A: Materials Science and Processing, 2005, 80, 695-700.	2.3	42
116	New ternary lamellar compounds of graphite. Carbon, 1975, 13, 293-295.	10.3	41
117	New carbon multiwall nanotubes – TiO2 nanocomposites obtained by the sol–gel method. Journal of Non-Crystalline Solids, 2004, 345-346, 596-600.	3.1	41
118	Self-discharge of AC/AC electrochemical capacitors in salt aqueous electrolyte. Electrochimica Acta, 2016, 202, 66-72.	5.2	41
119	Engaging nanoporous carbons in "beyond adsorption―applications: Characterization, challenges and performance. Carbon, 2020, 164, 69-84.	10.3	41
120	Structural model calculation of antimicrobial and antifungal agents derived from clay minerals. Applied Clay Science, 1998, 12, 435-445.	5.2	40
121	A single step process for the simultaneous purification and opening of multiwalled carbon nanotubes. Chemical Physics Letters, 2005, 412, 184-189.	2.6	40
122	Behavior of activated carbon cloths used as electrode in electrochemical processes. Chemical Engineering Journal, 2017, 310, 1-12.	12.7	40
123	Comparative Study of Two Protic Ionic Liquids as Electrolyte for Electrical Double-Layer Capacitors. Journal of the Electrochemical Society, 2014, 161, A228-A238.	2.9	39
124	Structure and properties of KC24(Bz)2, A graphite-potassium-benzene intercalation compound. Synthetic Metals, 1980, 2, 161-170.	3.9	38
125	An efficient two-step process for producing opened multi-walled carbon nanotubes of high purity. Chemical Physics Letters, 2005, 404, 374-378.	2.6	37
126	Graphite intercalation compounds as reagents in organic synthesis. An overview and some recent applications. Synthetic Metals, 1982, 4, 299-318.	3.9	36

#	Article	IF	CITATIONS
127	HRTEM study of activated carbons prepared by alkali hydroxide activation of anthracite. Carbon, 2004, 42, 1305-1310.	10.3	36
128	Electrochemical Regeneration of Activated Carbon Cloth Exhausted with Bentazone. Environmental Science & Technology, 2008, 42, 4500-4506.	10.0	36
129	Sorption and desorption of lithium ions from activated carbons. Carbon, 1996, 34, 481-487.	10.3	35
130	Functionalization of multiwall carbon nanotubes: Properties of nanotubes-epoxy composites. Molecular Crystals and Liquid Crystals, 2002, 387, 135-140.	0.9	35
131	Towards the realistic silicon/carbon composite for Li-ion secondary battery anode. Journal of Applied Electrochemistry, 2015, 45, 1-10.	2.9	35
132	Influence of Graphite Characteristics on the Electrochemical Performance in Alkylcarbonate LiTFSI Electrolyte for Li-Ion Capacitors and Li-Ion Batteries. Journal of the Electrochemical Society, 2013, 160, A1907-A1915.	2.9	34
133	A dual shape pore model to analyze the gas adsorption data of hierarchical micro-mesoporous carbons. Carbon, 2021, 178, 113-124.	10.3	34
134	The graphite intercalation compounds: A route to metallic supported clusters. Carbon, 1991, 29, 515-522.	10.3	33
135	Thermodynamic and Neutron Scattering Study of Hydrogen Adsorption in Two Mesoporous Ordered Carbons. Langmuir, 2006, 22, 4614-4619.	3.5	32
136	Microporous carbons finely-tuned by cyclic high-pressure low-temperature oxidation and their use in electrochemical capacitors. Carbon, 2012, 50, 3367-3374.	10.3	32
137	Capacitance enhancement of hybrid electrochemical capacitor with asymmetric carbon electrodes configuration in neutral aqueous electrolyte. Electrochimica Acta, 2018, 269, 640-648.	5.2	32
138	Effects of post-treatments on the performance of hard carbons in lithium cells. Journal of Power Sources, 2001, 97-98, 143-145.	7.8	31
139	Sodium molybdate – an additive of choice for enhancing the performance of AC/AC electrochemical capacitors in a salt aqueous electrolyte. Faraday Discussions, 2014, 172, 199-214.	3.2	31
140	Si/C composites prepared by spray drying from cross-linked polyvinyl alcohol as Li-ion batteries anodes. Electrochimica Acta, 2015, 174, 361-368.	5.2	31
141	Binary mixtures of ionic liquids based on EMIm cation and fluorinated anions: physico-chemical characterization in view of their application as low-temperature electrolytes. Journal of Molecular Liquids, 2020, 298, 111959.	4.9	31
142	Electrochemical Properties of Carbon Nanotube Fluorides in a Lithium Cell System. Molecular Crystals and Liquid Crystals, 1998, 310, 185-190.	0.3	30
143	Influence of the Pyrolysis Conditions on the Nature of Lithium Inserted in Hard Carbons. Journal of Physical Chemistry A, 2001, 105, 5794-5800.	2.5	30
144	Confinement of iodides in carbon porosity to prevent from positive electrode oxidation in high voltage aqueous hybrid electrochemical capacitors. Carbon, 2017, 125, 391-400.	10.3	30

#	Article	IF	CITATIONS
145	Dehydrogenation of benzene to biphenyl by a potassium–graphite lamellar compound (KC8). Journal of the Chemical Society Chemical Communications, 1976, , 611b-612.	2.0	29
146	Structure and transitions in coordinated lithium graphite intercalation compounds. Synthetic Metals, 1985, 12, 187-193.	3.9	28
147	Structure and mechanical properties of methyltrimethoxysilane-treated taeniolite films. Journal of Materials Science, 1996, 31, 4609-4615.	3.7	28
148	Carbon Nanofibers Grafted on Activated Carbon as an Electrode in Highâ€Power Supercapacitors. ChemSusChem, 2013, 6, 1516-1522.	6.8	28
149	Influence of the iodide/iodine redox system on the self-discharge of AC/AC electrochemical capacitors in salt aqueous electrolyte. Progress in Natural Science: Materials International, 2015, 25, 622-630.	4.4	27
150	Na2S sacrificial cathodic material for high performance sodium-ion capacitors. Electrochimica Acta, 2019, 318, 471-478.	5.2	27
151	Propriétés physiques des composés lamellaires KC24(THF)n. Materials Science and Engineering, 1977, 31, 243-247.	0.1	26
152	Influence of anthracite pretreatment in the preparation of activated carbons. Fuel, 1998, 77, 495-502.	6.4	25
153	Effect of low water content in protic ionic liquid on ions electrosorption in porous carbon: application to electrochemical capacitors. Physical Chemistry Chemical Physics, 2017, 19, 11173-11186.	2.8	25
154	Finely divided supported metals Ni, Co and Fe prepared trough graphite intercalation compounds: Study by X.P.S Synthetic Metals, 1988, 23, 493-501.	3.9	24
155	High-energy hybrid electrochemical capacitor operating down to â^¥00 °C with aqueous redox electrolyte based on choline salts. Journal of Power Sources, 2019, 427, 283-292.	7.8	24
156	Energy dispersive X-ray analysis on supported metallic clusters generated by redox processes on graphite intercalation compounds. Carbon, 1991, 29, 1233-1238.	10.3	23
157	Determination of the space between closed multiwalled carbon nanotubes by GCMC simulation of nitrogen adsorption. Journal of Colloid and Interface Science, 2008, 317, 442-448.	9.4	23
158	Effect of electrochemical conditions on the performance worsening of Si/C composite anodes for lithium batteries. Electrochimica Acta, 2010, 55, 729-736.	5.2	23
159	Composes ternaires graphite-lithium-tetrahydrofuranne: Synthese et etude par rayons X et resonance magnetique. Synthetic Metals, 1983, 7, 77-84.	3.9	22
160	Intercalation and partial deintercalation of tetrahydrofuran in CsC24: A neutron powder diffraction study. Synthetic Metals, 1988, 23, 133-138.	3.9	22
161	Polyether-modified fullerenes. Polymer Bulletin, 1994, 33, 175-182.	3.3	22
162	Activated carbons from chemically treated anthracite. Carbon, 1997, 35, 162-165.	10.3	22

#	Article	IF	CITATIONS
163	Clay/Carbon Nanocomposites as Precursors of Electrode Materials for Lithium-Ion Batteries and Supercapacitors. Molecular Crystals and Liquid Crystals, 2000, 340, 449-454.	0.3	22
164	Mechanism of lithium electrosorption by activated carbons. Electrochimica Acta, 2002, 47, 1545-1553.	5.2	22
165	The role played by local pH and pore size distribution in the electrochemical regeneration of carbon fabrics loaded with bentazon. Carbon, 2015, 94, 816-825.	10.3	22
166	Carbon/platinum nanotextured films produced by plasma sputtering. Carbon, 2009, 47, 209-214.	10.3	21
167	Evidence for electro-chemical interactions between multi-walled carbon nanotubes and human macrophages. Carbon, 2009, 47, 2789-2804.	10.3	21
168	Sustainable production of self-activated bio-derived carbons through solar pyrolysis for their use in supercapacitors. Journal of Analytical and Applied Pyrolysis, 2020, 150, 104901.	5.5	21
169	Graphite intercalation compounds as precursors of activated metals. Journal of Organometallic Chemistry, 1991, 403, 21-27.	1.8	20
170	Lithium insertion into boron containing carbons prepared by co-pyrolysis of coal–tar pitch and borane–pyridine complex. Journal of Physics and Chemistry of Solids, 2004, 65, 153-158.	4.0	20
171	Structure of the intercalated layer in graphite-potassium-tetrahydrofuran compounds. Synthetic Metals, 1986, 14, 179-188.	3.9	19
172	High temperature physintercalation into the 2nd stage CsC24. Synthetic Metals, 1989, 34, 59-65.	3.9	19
173	Electrochemical oxidation of graphite in an aqueous medium: intercalation of FeCl4â^'. Carbon, 1993, 31, 223-226.	10.3	19
174	Annealing of template nanotubes to well-graphitized multi-walled carbon nanotubes. Carbon, 2006, 44, 814-818.	10.3	19
175	Electrical Doubleâ€Layer Capacitors Based on a Ternary Ionic Liquid Electrolyte Operating at Low Temperature with Realistic Gravimetric and Volumetric Energy Outputs. ChemSusChem, 2021, 14, 1196-1208.	6.8	19
176	Separation of C60/C70 mixture on activated carbon and activated carbon fibres. Carbon, 1995, 33, 209-213.	10.3	18
177	Quantification of the Charge Consuming Phenomena under Highâ€Voltage Hold of Carbon/Carbon Supercapacitors by Coupling Operando and Postâ€Mortem Analyses. Angewandte Chemie - International Edition, 2019, 58, 17969-17977.	13.8	18
178	Formation and structure of the potassium-benzene graphitides. Synthetic Metals, 1983, 7, 263-269.	3.9	17
179	Physicochemical and electrochemical properties of a new series of protic ionic liquids with N-chloroalkyl functionalized cations. RSC Advances, 2016, 6, 55144-55158.	3.6	17
180	Advantageous carbon deposition during the irreversible electrochemical oxidation of Na2C4O4 used as a presodiation source for the anode of sodium-ion systems. Energy Storage Materials, 2021, 40, 22-30.	18.0	17

#	Article	IF	CITATIONS
181	Electron microscopy, growth and defects of carbon nanotubes. Journal of Physics and Chemistry of Solids, 1994, 55, 651-657.	4.0	16
182	Suggested improvements in the parameters used for describing the low relative pressure region of the water vapour isotherms of activated carbons. Carbon, 2013, 60, 556-558.	10.3	16
183	Sodium amide as a "zero dead mass―sacrificial material for the pre-sodiation of the negative electrode in sodium-ion capacitors. Electrochimica Acta, 2021, 375, 137980.	5.2	16
184	Activation par les metaux alcalins du processus de carbonisation des hydrocarbures aromatiques polycondensés. Carbon, 1972, 10, 539-551.	10.3	15
185	Melting of the intercalated layers in Csx(THF)yC24. Synthetic Metals, 1988, 23, 155-161.	3.9	15
186	Chemical reduction of FeCl3–graphite intercalation compounds with potassium–naphthalene complex in tetrahydrofuran. Journal of Materials Chemistry, 1991, 1, 735-738.	6.7	15
187	Fullerene core star-like polymers 2. Preparation from fullerenes and linear or cyclic monoaminopolyethers. European Polymer Journal, 1999, 35, 1619-1628.	5.4	15
188	Capacitance Evolution of Electrochemical Capacitors with Tailored Nanoporous Electrodes in Pure and Dissolved Ionic Liquids. Fuel Cells, 2010, 10, 834-839.	2.4	15
189	Selenocyanate-based ionic liquid as redox-active electrolyte for hybrid electrochemical capacitors. Electrochimica Acta, 2019, 314, 1-8.	5.2	15
190	Fitting the porous texture of carbon electrodes to a binary ionic liquid electrolyte for the realization of low temperature EDLCs. Electrochimica Acta, 2020, 350, 136416.	5.2	15
191	Insertion du benzène dans le composé lamellaire du graphite: KC24. Carbon, 1980, 18, 371-372.	10.3	14
192	Lithium Insertion in Carbon Nanotubes. Molecular Crystals and Liquid Crystals, 2000, 340, 547-552.	0.3	14
193	Surface properties and microtexture of catalytic multi-walled carbon nanotubes. Carbon, 2001, 39, 318-320.	10.3	14
194	Surface Properties, Porosity, Chemical and Electrochemical Applications. , 2006, , 495-549.		14
195	Electrochemically assisted adsorption/desorption of bentazone on activated carbon cloth. Adsorption, 2007, 13, 579-586.	3.0	14
196	Chemical etching of stainless steel 301 for improving performance of electrochemical capacitors in aqueous electrolyte. Journal of Power Sources, 2015, 279, 555-562.	7.8	14
197	Strategy to assess the carbon electrode modifications associated with the high voltage ageing of electrochemical capacitors in organic electrolyte. Energy Storage Materials, 2021, 38, 17-29.	18.0	14
198	1H NMR of potassium-tetrahydrofuran-graphite derivatives: KC24(THF)1 and KC24(THF)2. Physica B: Physics of Condensed Matter & C: Atomic, Molecular and Plasma Physics, Optics, 1980, 99, 525-530.	0.9	13

#	Article	IF	CITATIONS
199	New intercalation compounds of C60 with cesium. Chemical Physics Letters, 1993, 202, 506-508.	2.6	13
200	Novel carbons from nanocomposites for high lithium storage. Journal of Power Sources, 1999, 81-82, 323-327.	7.8	13
201	Reactive milling of graphite with lithium: Application to lithium batteries. Applied Physics Letters, 2002, 81, 775-777.	3.3	13
202	Freezing/melting of Lennard-Jones fluids in carbon nanotubes. Applied Physics Letters, 2005, 86, 103110.	3.3	13
203	Application of nanotextured carbons for electrochemical energy storage in aqueous medium. Journal of the Brazilian Chemical Society, 2006, 17, 1083-1089.	0.6	13
204	Electrical Double-Layer Capacitors and Pseudocapacitors. Advanced Materials and Technologies, 2009, , 329-375.	0.4	13
205	Proof of ion-pair structures in ammonium-based protic ionic liquids using combined NMR and DFT/PCM-based chemical shift calculations. Physical Chemistry Chemical Physics, 2017, 19, 25033-25043.	2.8	13
206	Capacitance characteristics of carbon-based electrochemical capacitors exposed to heteropolytungstic acid electrolyte. Electrochimica Acta, 2018, 282, 533-543.	5.2	13
207	On the influence of an organic molecule on the physical properties of ternary heavy alkali-tetrahydrofuran graphite derivatives. Synthetic Metals, 1985, 12, 175-180.	3.9	12
208	A solid-state NMR study of C70: A model molecule for amorphous carbons. Solid State Nuclear Magnetic Resonance, 2012, 42, 81-86.	2.3	12
209	Melting point depression of ionic liquids by their confinement in carbons of controlled mesoporosity. Carbon, 2020, 169, 501-511.	10.3	12
210	The antioxidation effect of boron oxide on a pyrocarbon. Carbon, 1992, 30, 714-716.	10.3	11
211	Carbons for supercapacitors obtained by one-step pressure induced oxidation at low temperature. Carbon, 2013, 61, 278-283.	10.3	11
212	Carbon electrodes for energy storage: general discussion. Faraday Discussions, 2014, 172, 239-260.	3.2	11
213	Grafting of activated carbon cloths for selective adsorption. Applied Surface Science, 2016, 370, 522-527.	6.1	11
214	On Energy: Electrochemical capacitors: Capacitance, functionality, and beyond. Energy Storage Materials, 2017, 9, A1-A3.	18.0	11
215	Protic ionic liquids with N-chloroalkyl functionalized cations as electrolytes for carbon-based electrochemical capacitors. Electrochimica Acta, 2017, 246, 971-980.	5.2	11
216	Effect of salt concentration in aqueous LiTFSI electrolytes on the performance of carbon-based electrochemical capacitors. Electrochimica Acta, 2021, 389, 138687.	5.2	11

#	Article	IF	CITATIONS
217	OrientedN2molecules intercalated inC24Rb. Physical Review B, 1995, 52, 5330-5334.	3.2	10
218	Structural and adsorption properties of carbons synthesized within taeniolite matrices. Journal of the Chemical Society, Faraday Transactions, 1995, 91, 493-497.	1.7	10
219	Elaboration and structure of silicate/carbon lamellar nanocomposites. Journal of Physics and Chemistry of Solids, 1996, 57, 1019-1029.	4.0	10
220	Doping of Carbon Nanotubes by Heavy Alkali Metals. Molecular Crystals and Liquid Crystals, 2000, 340, 769-774.	0.3	10
221	Hybrid capacitor with anthraquinone-grafted carbon as a battery-type electrode operating in a low pH aqueous salt solution. Journal of Materials Chemistry A, 2020, 8, 13548-13557.	10.3	10
222	Hydrogel–Polymer Electrolyte for Electrochemical Capacitors with High Volumetric Energy and Life Span. ChemSusChem, 2020, 13, 1876-1881.	6.8	10
223	Mobility of tetrahydrofuran in Cs(THF)xC24 and Li(THF)1.4C6: A neutron and N.M.R. study. Synthetic Metals, 1988, 23, 55-60.	3.9	9
224	Chapter 6 Application of nanotextured carbons for supercapacitors and hydrogen storage. Interface Science and Technology, 2006, 7, 293-343.	3.3	9
225	Nanoporous H-sorbed carbon as anode of secondary cell. Journal of Power Sources, 2009, 188, 617-620.	7.8	9
226	Towards understanding the impact of operating voltage on the stability of adiponitrile-based electrical double-layer capacitors. Journal of Power Sources, 2021, 496, 229841.	7.8	9
227	High Yield of Pure Multiwalled Carbon Nanotubes from the Catalytic Decomposition of Acetylene on in Situ Formed Cobalt Nanoparticles. Journal of Nanoscience and Nanotechnology, 2002, 2, 481-484.	0.9	9
228	13C NMR study of ternary intercalated compounds heavy alkali-tetrahydrofuran-graphite. Synthetic Metals, 1988, 23, 271-276.	3.9	8
229	New evidence for supported metals in the reaction of KC8 with metal chlorides. Journal of Materials Research, 1992, 7, 418-422.	2.6	8
230	New method for preparing supported metals: decomposition of metallocenes by the graphitide KC8. Journal of Materials Chemistry, 1992, 2, 957-960.	6.7	8
231	Synthesis and Structure of Calcium Aluminate Hydrates Intercalated by Aromatic Sulfonates. Materials Science Forum, 1994, 152-153, 335-338.	0.3	8
232	Development of LaxMOy nanoparticles dispersed in a layered silicate matrix. Journal of Physics and Chemistry of Solids, 1996, 57, 1049-1056.	4.0	8
233	Production of β′-SiAlONs through carbon/oxide nanocomposites obtained from montmorillonite/aromatic-ammonium complexes. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1993, 168, 239-243.	5.6	7
234	Effect of FeCl ₄ [–] intercalation on the transport properties of a graphitized polyimide film. Journal of Materials Research, 1993, 8, 2299-2304.	2.6	7

#	Article	IF	CITATIONS
235	Interaction between electroconducting polymers and C60. Journal of Physics and Chemistry of Solids, 1996, 57, 983-989.	4.0	7
236	Adsorption studies of a krypton film adsorbed on catalytically synthesized multiwalled carbon nanotubes. Surface Science, 2002, 506, 137-144.	1.9	7
237	The Carbon/Iodide Interface in Protic Ionic Liquid Medium for Application in Supercapacitors. ECS Transactions, 2014, 61, 21-30.	0.5	7
238	A Highâ€Voltage Electrochemical Cell Operating with Two Aqueous Electrolytes of Different pH Values. ChemElectroChem, 2018, 5, 2518-2521.	3.4	7
239	An intercalation compound of graphite probably containing potassium cryptate ions. Journal of the Chemical Society Chemical Communications, 1983, , 36-37.	2.0	6
240	HOPG as a host for redox reactions with FeCl4â^' in water medium. Synthetic Metals, 1995, 73, 27-32.	3.9	6
241	Electrochemical synthesis of iron supported on exfoliated graphite. Journal of Physics and Chemistry of Solids, 1996, 57, 841-847.	4.0	6
242	Tilt of N2 molecules physintercalated into C24K and C24Rb. Journal of Physics and Chemistry of Solids, 1996, 57, 909-913.	4.0	6
243	Role of the steric effects for the progress of alkanes intercalation in CsC24. Carbon, 1998, 36, 1759-1767.	10.3	6
244	Surface characterisation of template-synthesised multi-walled carbon nanotubes. Chemical Physics Letters, 2004, 396, 49-53.	2.6	6
245	Value Quantification of Electrochemical Capacitor Active Material. Journal of the Electrochemical Society, 2017, 164, A2732-A2737.	2.9	6
246	Electrochemical Application of Carbon Nanotubes. , 2003, , 305-318.		6
247	Measurements of flicker noise in supercapacitor cells. , 2017, , .		6
248	Nanotextured Carbons for Electrochemical Energy Storage. , 2006, , .		6
249	Electrochemical preparation of FeCl4â^'- graphite intercalation compounds in an aqueous medium. Carbon, 1991, 29, 1055-1056.	10.3	5
250	Host effect in the sorption of ethylene by CsC24 and KC24. Synthetic Metals, 1995, 73, 45-48.	3.9	5
251	Mechanism of Lithium Insertion in Different Kinds of Carbons. Molecular Crystals and Liquid Crystals, 1998, 310, 359-364.	0.3	5
252	DEVELOPMENT OF SUPERCAPACITORS BASED ON CONDUCTING POLYMERS. , 2006, , 41-50.		5

#	Article	IF	CITATIONS
253	Highly electroconductive multiwalled carbon nanotubes as potentially useful tools for modulating calcium balancing in biological environments. Nanomedicine: Nanotechnology, Biology, and Medicine, 2012, 8, 299-307.	3.3	5
254	Faradaic processes on quinone-grafted carbons in protic ionic liquid electrolyte. Electrochimica Acta, 2019, 328, 135090.	5.2	5
255	Synthèse et caractérisation de métaux finement divisés supportés sur graphite. Journal De Chimie Physique Et De Physico-Chimie Biologique, 1989, 86, 1787-1792.	0.2	5
256	Mobility and phase transitions of the [EMIm ⁺][FSI ^{â^'}] ionic liquid confined in micro- and mesoporous carbons. Journal of Materials Chemistry A, 2022, 10, 7928-7940.	10.3	5
257	A first stage ternary compound obtained by intercalation of a non polar molecule in CsC24. Carbon, 1993, 31, 654-657.	10.3	4
258	A new synthesis of β'-SiAION using the vapor phase technique reduction of kaolin. Journal of Materials Research, 1994, 9, 2079-2085.	2.6	4
259	Influence of methane on the nitriding gas reduction of kaolinite. Journal of Materials Chemistry, 1994, 4, 669.	6.7	4
260	Reduction of the Second Stage FeCl4â^'and FeCl3Graphite Intercalation Compounds. Molecular Crystals and Liquid Crystals, 1994, 244, 215-220.	0.3	4
261	Low temperature structures of the second stage cesium graphitide and effect of trace impurities. Journal of Materials Research, 1996, 11, 608-617.	2.6	4
262	High Pressure Lithium Intercalation into Catalytic Carbon Nanotubes. Molecular Crystals and Liquid Crystals, 1998, 310, 165-171.	0.3	4
263	Influence of Pyrolysis Conditions on the Performance of Hard Carbons as Anodes for Lithium Batteries. Molecular Crystals and Liquid Crystals, 2000, 340, 431-436.	0.3	4
264	Boronated mesophase pitch coke for lithium insertion. Journal of Power Sources, 2001, 97-98, 140-142.	7.8	4
265	Carbon Nanotubes as Backbones for Composite Electrodes of Supercapacitors. AIP Conference Proceedings, 2004, , .	0.4	4
266	Nanocarbons for Supercapacitors. , 2013, , 393-421.		4
267	The many faces of carbon in electrochemistry: general discussion. Faraday Discussions, 2014, 172, 117-137.	3.2	4
268	NOVEL CARBONACEOUS MATERIALS FOR APPLICATION IN THE ELECTROCHEMICAL SUPERCAPACITORS. , 2006, , 5-20.		4
269	Advantages of Electrochemical Hydrogen Storage over Gas Adsorption in Nanoporous Carbons. European Journal of Control, 2005, 30, 531-539.	2.6	4
270	Implementation of a choline bis(trifluoromethylsulfonyl)imide aqueous electrolyte for low temperature EDLCs enabled by a cosolvent. Journal of Energy Chemistry, 2022, 70, 84-94.	12.9	4

#	Article	IF	CITATIONS
271	A strategy for optimizing the output energy and durability of metal-ion capacitors fabricated with alloy-based anodes. Energy Storage Materials, 2022, 51, 719-732.	18.0	4
272	Influence of intercalation-desorption on the mutual arrangement of the elementary sheets in a partially graphitized carbon. Carbon, 1977, 15, 303-306.	10.3	3
273	Thermal evolution of the first stage Cs(THF)1.75C24 graphitide, an example of segregation and decorrelation at low temperature. Phase Transitions, 1989, 14, 153-159.	1.3	3
274	Low Temperature Structures of Stage 2 Cesium Graphitides with Various Compositions. Molecular Crystals and Liquid Crystals, 1994, 244, 313-318.	0.3	3
275	Intercalation of Heavy Alkali Metals in Boron Substituted Carbons BxC1â^'x. Molecular Crystals and Liquid Crystals, 1998, 310, 27-32.	0.3	3
276	C ₂₄ Cs samples containing oriented N ₂ molecules. Journal of Materials Research, 1999, 14, 3130-3137.	2.6	3
277	Capacitance properties of carbon nanotubes. , 1999, , .		3
278	Gas free oxidation of NaCN for presodiating and stabilizing the anodic host of sodium-ion capacitors. Journal of Energy Chemistry, 2022, 72, 33-40.	12.9	3
279	Enthalpy of intercalation of KC24 with tetrahydrofuran or benzene and thermal analysis of K(THF)2.5C24 and K(Bz)2.5C24. Synthetic Metals, 1988, 23, 427-433.	3.9	2
280	Temperature induced collapse of the Li(THF)x complexes in the Li(THF)2.13C12 graphitide. Synthetic Metals, 1989, 34, 33-39.	3.9	2
281	The origin of some phase transitions observed in the organo-alkali graphite intercalation compounds. Phase Transitions, 1991, 30, 91-102.	1.3	2
282	Physintercalation of Alkanes in CsC ₂₄ : Influence of the Molecular Size on the Structural Modifications. Materials Science Forum, 1992, 91-93, 331-336.	0.3	2
283	Intercalation of pentane into the stage 2 to 4 cesium graphitides: Relation between cesium density in the intercalated layers and the stage of the parent binary. Journal of Materials Research, 1993, 8, 2288-2298.	2.6	2
284	Electronic properties of MxC60 as seen by NMR and EPR and compared to graphite intercalation compounds. Journal of Physics and Chemistry of Solids, 1994, 55, 787-793.	4.0	2
285	Development of LaxMOy nanocatalysts dispersed in a layered silicate matrix. Studies in Surface Science and Catalysis, 1995, 91, 523-532.	1.5	2
286	Functionalisation of carbon nanotubes for composites. , 1999, , .		2
287	Characterization of new silicate/oxide lamellar nanocomposites by emanation thermal analysis. Materials Research Bulletin, 1999, 34, 503-510.	5.2	2
288	Designing nanostructured carbons for the negative electrode of lithium batteries. Molecular Crystals and Liquid Crystals, 2002, 386, 151-157.	0.9	2

#	Article	IF	CITATIONS
289	HYBRID SUPERCAPACITORS BASED ON α-MnO2/CARBON NANOTUBES COMPOSITES. NATO Science Series Series II, Mathematics, Physics and Chemistry, 2006, , 33-40.	0.1	2
290	Electrochemical Energy Storage. , 2008, , 593-629.		2
291	The origin of two structures along the c-axis in some organo-alkali graphitides. Physica B: Condensed Matter, 1989, 156-157, 289-291.	2.7	1
292	Supported Metallic Catalysts Achieved through Graphite Intercalation Compounds. Studies in Surface Science and Catalysis, 1991, , 479-485.	1.5	1
293	Influence of critical temperature on the phases formed during the intercalation of methane in CsC ₂₄ . Phase Transitions, 1993, 46, 27-39.	1.3	1
294	Sulphur Contaminated Fullerenes. Fullerenes, Nanotubes, and Carbon Nanostructures, 1994, 2, 195-200.	0.6	1
295	Ceramic coatings for carbonaceous composites from kaolinite. Carbon, 1995, 33, 1097-1103.	10.3	1
296	Determination of the low temperature 2D and 3D structures of the second stage cesium graphitide. Journal of Physics and Chemistry of Solids, 1996, 57, 733-740.	4.0	1
297	Neutron Diffraction Study of the N ₂ -CsC ₂₄ System. Molecular Crystals and Liquid Crystals, 1998, 310, 99-104.	0.3	1
298	EXAFS and XANES characterization of silicate-oxide nanocomposites. Molecular Crystals and Liquid Crystals, 1998, 311, 281-287.	0.3	1
299	Purification des nanotubes de carbone monofeuillets. Comptes Rendus De L'Academie De Sciences - Serie IIb: Mecanique, Physique, Chimie, Astronomie, 1999, 327, 925-931.	0.1	1
300	Instabilities of intercalated graphite structures - EPR oscillations. Polymer Bulletin, 2001, 47, 39-45.	3.3	1
301	Modifications of nanotubes surface and microtexture influence on MWNTS-based composites properties. AIP Conference Proceedings, 2002, , .	0.4	1
302	Gas Adsorption Evidence of Single-Wall and Multi-Wall Carbon Nanotube Opening. Materials Research Society Symposia Proceedings, 2003, 782, 1.	0.1	1
303	CESEP Special issue. Carbon, 2006, 44, 2359.	10.3	1
304	Quantification of the Charge Consuming Phenomena under Highâ€Voltage Hold of Carbon/Carbon Supercapacitors by Coupling Operando and Postâ€Mortem Analyses. Angewandte Chemie, 2019, 131, 18137-18145.	2.0	1
305	HIGH RESOLUTION TRANSMISSION ELECTRON MICROSCOPY IMAGE ANALYSIS OF DISORDERED CARBONS USED FOR ELECTROCHEMICAL STORAGE OF ENERGY. , 2006, , 411-424.		1
306	Transport Properties of A Graphitized Polyimide Film and Its Stage-2 FeCl ₄ ^{â^'} Intercalation Compound. Molecular Crystals and Liquid Crystals, 1994, 245, 55-60.	0.3	0

#	Article	IF	CITATIONS
307	The Low-Temperature Three-Dimensional Structures of the Second-Stage Caesium Graphitide. Journal of Applied Crystallography, 1998, 31, 67-73.	4.5	0
308	Researching Face Centered Cubic Cs3C60. Molecular Crystals and Liquid Crystals, 1998, 310, 119-129.	0.3	0
309	A Comparative Study of Silicate-Oxide Nanocomposites. Molecular Crystals and Liquid Crystals, 1998, 311, 295-301.	0.3	Ο
310	Alkali-metal intercalation in carbon nanotubes. , 1999, , .		0
311	Synthesis and Structure of B _{<i>x</i>} C _{1â^'<i>x</i>} Intercalation Compounds with Heavy Alkali Metals (K, Rb, and Cs). Journal of Materials Research, 2000, 15, 1409-1416.	2.6	Ο
312	Inorganic-organic Hybrid materials from Layered Double Hydroxide structure and their subsequent carbonaceous repliqua. Materials Research Society Symposia Proceedings, 2004, 847, 403.	0.1	0
313	Carbon-Based Nanomaterials for Electrochemical Energy Storage. , 0, , 177-204.		Ο
314	Development of a High Energy Hybrid Graphite/Carbon Capacitor in Organic Electrolyte. ECS Meeting Abstracts, 2011, , .	0.0	0
315	Reversible Trapping of Emerging Water Contaminants. ECS Meeting Abstracts, 2013, , .	0.0	Ο
316	Enhancing the Energy Stored in Electrochemical Capacitors by Electrodes Hybridization. Electrochemistry, 2020, 88, 51-51.	1.4	0
317	Nanotextured Carbons for Electrochemical Energy Storage. Advanced Materials and Technologies, 2006, , 295-319.	0.4	Ο
318	Analysis of Physical Properties of Potassium-Tetraydrofuran-Graphite Derivatives KC24s (THF) m. Springer Series in Solid-state Sciences, 1981, , 103-108.	0.3	0
319	NMR Characterization of Heavy Alkali Metal-Organic Molecule Graphite Compounds Prepared from Highly-Oriented Pyrolytic Graphite. NATO ASI Series Series B: Physics, 1986, , 457-459.	0.2	0
320	Synthesis and application of carbon nanostructured materials as the electrodes of supercapacitors. Chemical Bulletin of Kazakh National University, 2014, , 49-55.	0.1	0