Olof Dahlqvist Leinhard

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5357827/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Cardiometabolic Health Outcomes Associated With Discordant Visceral and Liver Fat Phenotypes: Insights From the Dallas Heart Study and UK Biobank. Mayo Clinic Proceedings, 2022, 97, 225-237.	3.0	26
2	Adipose tissue distribution from body MRI is associated with cross-sectional and longitudinal brain age in adults. NeuroImage: Clinical, 2022, 33, 102949.	2.7	22
3	21st Century Advances in Multimodality Imaging of Obesity for Care of the Cardiovascular Patient. JACC: Cardiovascular Imaging, 2021, 14, 482-494.	5.3	25
4	Evaluating the prevalence and severity of NAFLD in primary care: the EPSONIP study protocol. BMC Gastroenterology, 2021, 21, 180.	2.0	5
5	The effect on precision and T1 bias comparing two flip angles when estimating muscle fat infiltration using fatâ€referenced chemical shiftâ€encoded imaging. NMR in Biomedicine, 2021, 34, e4581.	2.8	5
6	Biomarkers of liver fibrosis: prospective comparison of multimodal magnetic resonance, serum algorithms and transient elastography. Scandinavian Journal of Gastroenterology, 2020, 55, 848-859.	1.5	15
7	Reproducibility and repeatability of MRIâ€based body composition analysis. Magnetic Resonance in Medicine, 2020, 84, 3146-3156.	3.0	39
8	Evidence of Mitochondrial Dysfunction in Fibromyalgia: Deviating Muscle Energy Metabolism Detected Using Microdialysis and Magnetic Resonance. Journal of Clinical Medicine, 2020, 9, 3527.	2.4	17
9	MRI in Neuromuscular Diseases: An Emerging Diagnostic Tool and Biomarker for Prognosis and Efficacy. Annals of Neurology, 2020, 88, 669-681.	5.3	46
10	Model-inferred mechanisms of liver function from magnetic resonance imaging data: Validation and variation across a clinically relevant cohort. PLoS Computational Biology, 2019, 15, e1007157.	3.2	6
11	The relation between local and distal muscle fat infiltration in chronic whiplash using magnetic resonance imaging. PLoS ONE, 2019, 14, e0226037.	2.5	7
12	Liver R2* is affected by both iron and fat: A dual biopsyâ€validated study of chronic liver disease. Journal of Magnetic Resonance Imaging, 2019, 50, 325-333.	3.4	22
13	Title is missing!. , 2019, 14, e0226037.		0
14	Title is missing!. , 2019, 14, e0226037.		0
15	Title is missing!. , 2019, 14, e0226037.		0
16	Title is missing!. , 2019, 14, e0226037.		0
17	Title is missing!. , 2019, 14, e0226037.		0
18	Advanced Body Composition Assessment: From Body Mass Index to Body Composition Profiling. Journal of Investigative Medicine, 2018, 66, 1-9.	1.6	316

#	Article	IF	CITATIONS
19	Wholeâ€body adipose tissue and lean muscle volumes and their distribution across gender and age: MRâ€derived normative values in a normalâ€weight Swiss population. Magnetic Resonance in Medicine, 2018, 79, 449-458.	3.0	28
20	The qualitative grading of muscle fat infiltration in whiplash using fat and water magnetic resonance imaging. Spine Journal, 2018, 18, 717-725.	1.3	24
21	Unexpected Fat Distribution in Adolescents With Narcolepsy. Frontiers in Endocrinology, 2018, 9, 728.	3.5	10
22	Precision of MRI-based body composition measurements of postmenopausal women. PLoS ONE, 2018, 13, e0192495.	2.5	46
23	Using a 3% Proton Density Fat Fraction as a Cut-Off Value Increases Sensitivity of Detection of Hepatic Steatosis, Based on Results From Histopathology Analysis. Gastroenterology, 2017, 153, 53-55.e7.	1.3	51
24	Robust water fat separated dualâ€echo <scp>MRI</scp> by phaseâ€sensitive reconstruction. Magnetic Resonance in Medicine, 2017, 78, 1208-1216.	3.0	12
25	Test-retest reliability of rapid whole body and compartmental fat volume quantification on a widebore 3T MR system in normal-weight, overweight, and obese subjects. Journal of Magnetic Resonance Imaging, 2016, 44, 1464-1473.	3.4	16
26	Fat quantification in skeletal muscle using multigradient-echo imaging: Comparison of fat and water references. Journal of Magnetic Resonance Imaging, 2016, 43, 203-212.	3.4	24
27	Dense breast tissue in postmenopausal women is associated with a pro-inflammatory microenvironment <i>in vivo</i> . Oncolmmunology, 2016, 5, e1229723.	4.6	18
28	Feasibility of MR-Based Body Composition Analysis in Large Scale Population Studies. PLoS ONE, 2016, 11, e0163332.	2.5	98
29	Comparing hepatic 2D and 3D magnetic resonance elastography methods in a clinical setting – Initial experiences. European Journal of Radiology Open, 2015, 2, 66-70.	1.6	10
30	Consistent intensity inhomogeneity correction in water-fat MRI. Journal of Magnetic Resonance Imaging, 2015, 42, 468-476.	3.4	23
31	Characterization of brown adipose tissue by water–fat separated magnetic resonance imaging. Journal of Magnetic Resonance Imaging, 2015, 42, 1639-1645.	3.4	23
32	Visual assessment of biliary excretion of Gd-EOB-DTPA in patients with suspected diffuse liver disease – A biopsy-verified prospective study. European Journal of Radiology Open, 2015, 2, 19-25.	1.6	7
33	Automatic and quantitative assessment of regional muscle volume by multiâ€atlas segmentation using wholeâ€body water–fat MRI. Journal of Magnetic Resonance Imaging, 2015, 41, 1558-1569.	3.4	155
34	Normal Appearing and Diffusely Abnormal White Matter in Patients with Multiple Sclerosis Assessed with Quantitative MR. PLoS ONE, 2014, 9, e95161.	2.5	56
35	Brown Adipose Tissue in Humans. Methods in Enzymology, 2014, 537, 141-159.	1.0	56
36	Physiologically Realistic and Validated Mathematical Liver Model Revels Hepatobiliary Transfer Rates for Gd-EOB-DTPA Using Human DCE-MRI Data. PLoS ONE, 2014, 9, e95700.	2.5	26

#	Article	IF	CITATIONS
37	Separation of advanced from mild hepatic fibrosis by quantification of the hepatobiliary uptake of Gd-EOB-DTPA. European Radiology, 2013, 23, 174-181.	4.5	61
38	Evidence for two types of brown adipose tissue in humans. Nature Medicine, 2013, 19, 631-634.	30.7	563
39	Preoperative and postoperative ¹ H-MR spectroscopy changes in frontal deep white matter and the thalamus in idiopathic normal pressure hydrocephalus. Journal of Neurology, Neurosurgery and Psychiatry, 2013, 84, 188-193.	1.9	6
40	Increased Concentrations of Glutamate and Glutamine in Normal-Appearing White Matter of Patients with Multiple Sclerosis and Normal MR Imaging Brain Scans. PLoS ONE, 2013, 8, e61817.	2.5	62
41	Association between Change in Normal Appearing White Matter Metabolites and Intrathecal Inflammation in Natalizumab-Treated Multiple Sclerosis. PLoS ONE, 2012, 7, e44739.	2.5	16
42	Effects of moderate red wine consumption on liver fat and blood lipids: a prospective randomized study. Annals of Medicine, 2011, 43, 545-554.	3.8	46
43	Visual grading of 2D and 3D functional MRI compared with image-based descriptive measures. European Radiology, 2010, 20, 714-724.	4.5	2
44	Men develop more intraabdominal obesity and signs of the metabolic syndrome after hyperalimentation than women. Metabolism: Clinical and Experimental, 2009, 58, 995-1001.	3.4	30