
David F Ackerley

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5357784/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Use of an optimised enzyme/prodrug combination for Clostridia directed enzyme prodrug therapy induces a significant growth delay in necrotic tumours. Cancer Gene Therapy, 2022, 29, 178-188.	2.2	9
2	Preparation of Soil Metagenome Libraries and Screening for Gene-Specific Amplicons. Methods in Molecular Biology, 2022, 2397, 3-17.	0.4	4
3	Interrogation of the Structure–Activity Relationship of a Lipophilic Nitroaromatic Prodrug Series Designed for Cancer Gene Therapy Applications. Pharmaceuticals, 2022, 15, 185.	1.7	2
4	NTR 2.0: a rationally engineered prodrug-converting enzyme with substantially enhanced efficacy for targeted cell ablation. Nature Methods, 2022, 19, 205-215.	9.0	29
5	A New Transgenic Line for Rapid and Complete Neutrophil Ablation. Zebrafish, 2022, 19, 109-113.	0.5	5
6	Directed evolution of the B. subtilis nitroreductase YfkO improves activation of the PET-capable probe SN33623 and CB1954 prodrug. Biotechnology Letters, 2021, 43, 203-211.	1.1	1
7	Hydrated Rubrolides from the New Zealand Tunicate <i>Synoicum kuranui</i> . Journal of Natural Products, 2021, 84, 544-547.	1.5	8
8	Engineering the Escherichia coli Nitroreductase NfsA to Create a Flexible Enzyme-Prodrug Activation System. Frontiers in Pharmacology, 2021, 12, 701456.	1.6	7
9	Large-scale phenotypic drug screen identifies neuroprotectants in zebrafish and mouse models of retinitis pigmentosa. ELife, 2021, 10, .	2.8	15
10	Inhibition of Indigoidine Synthesis as a High-Throughput Colourimetric Screen for Antibiotics Targeting the Essential Mycobacterium tuberculosis Phosphopantetheinyl Transferase PptT. Pharmaceutics, 2021, 13, 1066.	2.0	4
11	Skyllamycins D and E, Non-Ribosomal Cyclic Depsipeptides from Lichen-Sourced <i>Streptomyces anulatus</i> . Journal of Natural Products, 2021, 84, 2536-2543.	1.5	15
12	Metathramycin, a new bioactive aureolic acid discovered by heterologous expression of a metagenome derived biosynthetic pathway. RSC Chemical Biology, 2021, 2, 556-567.	2.0	11
13	Restoring Tumour Selectivity of the Bioreductive Prodrug PR-104 by Developing an Analogue Resistant to Aerobic Metabolism by Human Aldo-Keto Reductase 1C3. Pharmaceuticals, 2021, 14, 1231.	1.7	5
14	High-Throughput Screening for Inhibitors of the SARS-CoV-2 Protease Using a FRET-Biosensor. Molecules, 2020, 25, 4666.	1.7	27
15	The indigoidine synthetase BpsA provides a colorimetric ATP assay that can be adapted to quantify the substrate preferences of other NRPS enzymes. Biotechnology Letters, 2020, 42, 2665-2671.	1.1	9
16	Total Synthesis and Bioactivity Studies of Fungal Metabolite (â^')-TAN-2483B. Organic Letters, 2020, 22, 9427-9432.	2.4	6
17	Mechanistic Understanding Enables the Rational Design of Salicylanilide Combination Therapies for Gram-Negative Infections. MBio, 2020, 11, .	1.8	28
18	Efficient rational modification of non-ribosomal peptides by adenylation domain substitution. Nature Communications, 2020, 11, 4554.	5.8	62

DAVID F ACKERLEY

#	Article	IF	CITATIONS
19	Metagenomic Exploration of the Marine Sponge <i>Mycale hentscheli</i> Uncovers Multiple Polyketide-Producing Bacterial Symbionts. MBio, 2020, 11, .	1.8	43
20	Protocol for evaluating the abilities of diverse nitroaromatic prodrug metabolites to exit a model Gram negative bacterial vector. MethodsX, 2020, 7, 100797.	0.7	1
21	Directed Evolution of the Nonribosomal Peptide Synthetase BpsA to Enable Recognition by the Human Phosphopantetheinyl Transferase for Counter-Screening Antibiotic Candidates. ACS Infectious Diseases, 2020, 6, 2879-2886.	1.8	3
22	Intracellular complexities of acquiring a new enzymatic function revealed by mass-randomisation of active-site residues. ELife, 2020, 9, .	2.8	8
23	A cofactor consumption screen identifies promising NfsB family nitroreductases for dinitrotoluene remediation. Biotechnology Letters, 2019, 41, 1155-1162.	1.1	8
24	Engineering <i>Escherichia coli</i> NfsB To Activate a Hypoxia-Resistant Analogue of the PET Probe EF5 To Enable Non-Invasive Imaging during Enzyme Prodrug Therapy. Biochemistry, 2019, 58, 3700-3710.	1.2	11
25	Lamellarin Sulfates from the Pacific Tunicate <i>Didemnum ternerratum</i> . Journal of Natural Products, 2019, 82, 2000-2008.	1.5	29
26	Metagenome Driven Discovery of Nonribosomal Peptides. ACS Chemical Biology, 2019, 14, 2115-2126.	1.6	9
27	Secondary metabolism in the lichen symbiosis. Chemical Society Reviews, 2018, 47, 1730-1760.	18.7	145
28	Evaluation of NfsA-like nitroreductases from Neisseria meningitidis and Bartonella henselae for enzyme-prodrug therapy, targeted cellular ablation, and dinitrotoluene bioremediation. Biotechnology Letters, 2018, 40, 359-367.	1.1	10
29	Understanding biosynthetic protein–protein interactions. Natural Product Reports, 2018, 35, 1118-1119.	5.2	1
30	Evaluating the abilities of diverse nitroaromatic prodrug metabolites to exit a model Gram negative vector for bacterial-directed enzyme-prodrug therapy. Biochemical Pharmacology, 2018, 158, 192-200.	2.0	12
31	Mechanism of Two-/Four-Electron Reduction of Nitroaromatics by Oxygen-Insensitive Nitroreductases: The Role of a Non-Enzymatic Reduction Step. Molecules, 2018, 23, 1672.	1.7	10
32	Structural, functional and evolutionary perspectives on effective re-engineering of non-ribosomal peptide synthetase assembly lines. Natural Product Reports, 2018, 35, 1210-1228.	5.2	76
33	A sensitive single-enzyme assay system using the non-ribosomal peptide synthetase BpsA for measurement of L-glutamine in biological samples. Scientific Reports, 2017, 7, 41745.	1.6	19
34	Engineering a Multifunctional Nitroreductase for Improved Activation of Prodrugs and PET Probes for Cancer Gene Therapy. Cell Chemical Biology, 2017, 24, 391-403.	2.5	56
35	Reduction of quinones and nitroaromatic compounds by Escherichia coli nitroreductase A (NfsA): Characterization of kinetics and substrate specificity. Archives of Biochemistry and Biophysics, 2017, 614, 14-22.	1.4	33
36	Advancing Clostridia to Clinical Trial: Past Lessons and Recent Progress. Cancers, 2016, 8, 63.	1.7	28

DAVID F ACKERLEY

#	Article	IF	CITATIONS
37	Rational design of an AKR1C3-resistant analog of PR-104 for enzyme-prodrug therapy. Biochemical Pharmacology, 2016, 116, 176-187.	2.0	16
38	Generating Functional Recombinant NRPS Enzymes in the Laboratory Setting via Peptidyl Carrier Protein Engineering. Cell Chemical Biology, 2016, 23, 1395-1406.	2.5	36
39	Cracking the Nonribosomal Code. Cell Chemical Biology, 2016, 23, 535-537.	2.5	10
40	Nitroreductase gene-directed enzyme prodrug therapy: insights and advances toward clinical utility. Biochemical Journal, 2015, 471, 131-153.	1.7	111
41	Development of a Mycobacterium smegmatis transposon mutant array for characterising the mechanism of action of tuberculosis drugs: Findings with isoniazid and its structural analogues. Tuberculosis, 2015, 95, 432-439.	0.8	10
42	Portability of the thiolation domain in recombinant pyoverdine non-ribosomal peptide synthetases. BMC Microbiology, 2015, 15, 162.	1.3	23
43	A gain-of-function positive-selection expression plasmid that enables high-efficiency cloning. Biotechnology Letters, 2015, 37, 383-389.	1.1	3
44	Pseudomonas aeruginosa MdaB and WrbA are water-soluble two-electron quinone oxidoreductases with the potential to defend against oxidative stress. Journal of Microbiology, 2014, 52, 771-777.	1.3	22
45	Genetic manipulation of non-ribosomal peptide synthetases to generate novel bioactive peptide products. Biotechnology Letters, 2014, 36, 2407-2416.	1.1	49
46	Crystal structure of the essential Mycobacterium tuberculosis phosphopantetheinyl transferase PptT, solved as a fusion protein with maltose binding protein. Journal of Structural Biology, 2014, 188, 274-278.	1.3	13
47	Biosynthesis of Novel Pyoverdines by Domain Substitution in a Nonribosomal Peptide Synthetase of Pseudomonas aeruginosa. Applied and Environmental Microbiology, 2014, 80, 5723-5731.	1.4	62
48	Error-Prone PCR and Effective Generation of Gene Variant Libraries for Directed Evolution. Methods in Molecular Biology, 2014, 1179, 3-22.	0.4	47
49	Site-Saturation Mutagenesis by Overlap Extension PCR. Methods in Molecular Biology, 2014, 1179, 83-101.	0.4	30
50	Pseudomonas aeruginosa NfsB and nitro-CBI-DEI – a promising enzyme/prodrug combination for gene directed enzyme prodrug therapy. Molecular Cancer, 2013, 12, 58.	7.9	13
51	Creation and screening of a multi-family bacterial oxidoreductase library to discover novel nitroreductases that efficiently activate the bioreductive prodrugs CB1954 and PR-104A. Biochemical Pharmacology, 2013, 85, 1091-1103.	2.0	49
52	The Flavin Reductase MsuE Is a Novel Nitroreductase that Can Efficiently Activate Two Promising Next-Generation Prodrugs for Gene-Directed Enzyme Prodrug Therapy. Cancers, 2013, 5, 985-997.	1.7	25
53	Escherichia coli NemA Is an Efficient Chromate Reductase That Can Be Biologically Immobilized to Provide a Cell Free System for Remediation of Hexavalent Chromium. PLoS ONE, 2013, 8, e59200.	1.1	78
54	A functional screen for recovery of 4′â€phosphopantetheinyl transferase and associated natural product biosynthesis genes from metagenome libraries. Environmental Microbiology, 2012, 14, 1198-1209.	1.8	50

DAVID F ACKERLEY

#	Article	IF	CITATIONS
55	Rapid and flexible biochemical assays for evaluating 4′-phosphopantetheinyl transferase activity. Biochemical Journal, 2011, 436, 709-717.	1.7	43
56	Characterization of pyoverdine and achromobactin in Pseudomonas syringae pv. phaseolicola 1448a. BMC Microbiology, 2011, 11, 218.	1.3	58
57	Abstract B89: Molecular imaging using bacterial nitroreductase reporter genes by repurposing the clinical stage hypoxia PET probe EF5 , 2011, , .		0
58	Abstract B88: Discovery, characterization, and engineering of bacterial nitroreductases for gene-directed enzyme prodrug therapy , 2011, , .		1
59	Discovery and evaluation of Escherichia coli nitroreductases that activate the anti-cancer prodrug CB1954. Biochemical Pharmacology, 2010, 79, 678-687.	2.0	96
60	Enzyme improvement in the absence of structural knowledge: a novel statistical approach. ISME Journal, 2008, 2, 171-179.	4.4	36
61	Role of the <i>rapA</i> Gene in Controlling Antibiotic Resistance of <i>Escherichia coli</i> Biofilms. Antimicrobial Agents and Chemotherapy, 2007, 51, 3650-3658.	1.4	90
62	Analysis of Novel Soluble Chromate and Uranyl Reductases and Generation of an Improved Enzyme by Directed Evolution. Applied and Environmental Microbiology, 2006, 72, 7074-7082.	1.4	70
63	Effect of Chromate Stress on Escherichia coli K-12. Journal of Bacteriology, 2006, 188, 3371-3381.	1.0	202
64	New enzyme for reductive cancer chemotherapy, YieF, and its improvement by directed evolution. Molecular Cancer Therapeutics, 2006, 5, 97-103.	1.9	49
65	ChrR, a Soluble Quinone Reductase of Pseudomonas putida That Defends against H2O2. Journal of Biological Chemistry, 2005, 280, 22590-22595.	1.6	119
66	Mechanism of chromate reduction by the Escherichia coli protein, NfsA, and the role of different chromate reductases in minimizing oxidative stress during chromate reduction. Environmental Microbiology, 2004, 6, 851-860.	1.8	219
67	Characterization and Genetic Manipulation of Peptide Synthetases in Pseudomonas aeruginosa PAO1 in Order to Generate Novel Pyoverdines. Chemistry and Biology, 2004, 11, 971-980.	6.2	34
68	Chromate-Reducing Properties of Soluble Flavoproteins from Pseudomonas putida and Escherichia coli. Applied and Environmental Microbiology, 2004, 70, 873-882.	1.4	252
69	Substrate Specificity of the Nonribosomal Peptide Synthetase PvdD from Pseudomonas aeruginosa. Journal of Bacteriology, 2003, 185, 2848-2855.	1.0	56