
Paul Nancarrow

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5357712/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Zirconium silicate-ionic liquid membranes for high-temperature hydrogen PEM fuel cells. International Journal of Hydrogen Energy, 2024, 52, 894-908.	3.8	12
2	Synthesis and characterization of clay-based adsorbents modified with alginate, surfactants, and nanoparticles for methylene blue removal. Environmental Nanotechnology, Monitoring and Management, 2022, 17, 100644.	1.7	9
3	Ionic Liquid Agar–Alginate Beads as a Sustainable Phenol Adsorbent. Polymers, 2022, 14, 984.	2.0	8
4	Ionic Liquid Melting Points: Structure–Property Analysis and New Hybrid Group Contribution Model. Industrial & Engineering Chemistry Research, 2022, 61, 4683-4706.	1.8	11
5	Amine-Based Deep Eutectic Solvents for Alizarin Extraction from Aqueous Media. Processes, 2022, 10, 794.	1.3	3
6	Novel composite membrane based on zirconium phosphate-ionic liquids for high temperature PEM fuel cells. International Journal of Hydrogen Energy, 2021, 46, 6100-6109.	3.8	67
7	Enhanced proton conduction in zirconium phosphate/ionic liquids materials for high-temperature fuel cells. International Journal of Hydrogen Energy, 2021, 46, 4857-4869.	3.8	67
8	Sustainable management of cut flowers waste by activation and its application in wastewater treatment technology. Environmental Science and Pollution Research, 2021, 28, 31803-31813.	2.7	3
9	Role of cation and alkyl chain length on the extraction of phenol from aqueous solution using NTf2-based ionic liquids: Experimental and computational analysis. Journal of Molecular Liquids, 2021, 326, 115305.	2.3	15
10	Group Contribution Estimation of Ionic Liquid Melting Points: Critical Evaluation and Refinement of Existing Models. Molecules, 2021, 26, 2454.	1.7	10
11	Comprehensive analysis and correlation of ionic liquid conductivity data for energy applications. Energy, 2021, 220, 119761.	4.5	23
12	COSMO-RS based screening of ionic liquids for extraction of phenolic compounds from aqueous media. Journal of Molecular Liquids, 2021, 328, 115387.	2.3	41
13	Progress in Bioâ€Based Phenolic Foams: Synthesis, Properties, and Applications. ChemBioEng Reviews, 2021, 8, 612-632.	2.6	10
14	lonic liquid-assisted refinery processes – A review and industrial perspective. Fuel, 2021, 302, 121195.	3.4	17
15	Preparation of sustainable activated carbon-alginate beads impregnated with ionic liquid for phenol decontamination. Journal of Cleaner Production, 2021, 321, 128899.	4.6	20
16	Application of protic ammonium-based ionic liquids with carboxylate anions for phenol extraction from aqueous solution and their cytotoxicity on human cells. Journal of Molecular Liquids, 2021, 342, 117447.	2.3	8
17	Ionic liquids and deep eutectic solvents for the recovery of phenolic compounds: effect of ionic liquids structure and process parameters. RSC Advances, 2021, 11, 12398-12422.	1.7	53
18	Bio-Based Alternatives to Phenol and Formaldehyde for the Production of Resins. Polymers, 2020, 12, 2237.	2.0	111

PAUL NANCARROW

#	Article	IF	CITATIONS
19	Thermal Conductivities of Choline Chloride-Based Deep Eutectic Solvents and Their Mixtures with Water: Measurement and Estimation. Molecules, 2020, 25, 3816.	1.7	20
20	Direct hydrocarbon fuel cells: A promising technology for improving energy efficiency. Energy, 2019, 172, 207-219.	4.5	98
21	Fast pyrolysis of date palm (Phoenix dactylifera) waste in a bubbling fluidized bed reactor. Renewable Energy, 2019, 143, 719-730.	4.3	61
22	Spent caustic treatment using hydrophobic room temperatures ionic liquids. Journal of Industrial and Engineering Chemistry, 2018, 65, 325-333.	2.9	12
23	Ultrasound and ionic liquid-enhanced extractive desulfurization of diesel. MATEC Web of Conferences, 2018, 171, 03003.	0.1	2
24	Vibrational assignments, conformational analysis, and molecular structures of \$\$left[{ext{C}_{ext{n}} ext{mim}} ight]left[{ext{NTF}_{ext{2}} } ight]\$\$ C n mim NTF 2 (nÂ=Â2, 4, 6,) Tj ETQq0 0 0 Journal of the Iranian Chemical Society, 2017, 14, 1281-1300.	rgBT/Ove	erlock 10 Tf 50
25	Ionic Liquids in Space Technology – Current and Future Trends. ChemBioEng Reviews, 2017, 4, 106-119.	2.6	50
26	Successful degradation of Reactive Black 5 by engineered Fe/Pd nanoparticles: Mechanism and kinetics aspects. Journal of the Taiwan Institute of Chemical Engineers, 2016, 67, 406-417.	2.7	18
27	Technical Evaluation of Ionic Liquid-Extractive Processing of Ultra Low Sulfur Diesel Fuel. Industrial & Engineering Chemistry Research, 2015, 54, 10843-10853.	1.8	20
28	Group Contribution Methods for Estimation of Ionic Liquid Heat Capacities: Critical Evaluation and Extension. Chemical Engineering and Technology, 2015, 38, 632-644.	0.9	27
29	Rheological properties of the nanofluids of tungsten oxide nanoparticles in ethylene glycol and glycerol. Microfluidics and Nanofluidics, 2015, 19, 1191-1202.	1.0	25
30	Composite ionic liquid and polymer membranes for gas separation at elevated temperatures. Journal of Membrane Science, 2014, 450, 407-417.	4.1	103
31	Composite ionic liquid–polymer–catalyst membranes for reactive separation of hydrogen from carbon monoxide. Journal of Membrane Science, 2014, 472, 222-231.	4.1	8
32	Structural, electrical, and rheological properties of palladium/silver bimetallic nanoparticles prepared by conventional and ultrasonic-assisted reduction methods. Advanced Powder Technology, 2014, 25, 801-810.	2.0	26
33	Preparation, characterization, and rheological properties of graphene–glycerol nanofluids. Chemical Engineering Journal, 2013, 231, 365-372.	6.6	127
34	A Study on Permeabilities and Selectivities of Small-Molecule Gases for Composite Ionic Liquid and Polymer Membranes. Applied Mechanics and Materials, 2013, 448-453, 765-770.	0.2	2
35	Synthesis, characterization, and measurement of structural, optical, and phtotoluminescent properties of zinc sulfide quantum dots. Materials Science in Semiconductor Processing, 2013, 16, 356-362.	1.9	40
36	Sonochemical synthesis and measurement of optical properties of zinc sulfide quantum dots. Chemical Engineering Journal, 2012, 209, 113-117.	6.6	58

PAUL NANCARROW

#	Article	IF	CITATIONS
37	The Importance of Acetonitrile in the Pharmaceutical Industry and Opportunities for its Recovery from Waste. Organic Process Research and Development, 2012, 16, 612-624.	1.3	101
38	Facile and green synthesis of ZnO nanostructures in a room-temperature ionic liquid 1-hexyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide. Inorganic Materials, 2011, 47, 379-384.	0.2	2
39	Theoretical and experimental correlations of gas dissolution, diffusion, and thermodynamic properties in determination of gas permeability and selectivity in supported ionic liquid membranes. Advances in Colloid and Interface Science, 2011, 164, 45-55.	7.0	56
40	Preparation, structural characterization, semiconductor and photoluminescent properties of zinc oxide nanoparticles in a phosphonium-based ionic liquid. Materials Science in Semiconductor Processing, 2011, 14, 69-72.	1.9	22
41	Fabrication of cerium oxide nanoparticles: Characterization and optical properties. Journal of Colloid and Interface Science, 2011, 356, 473-480.	5.0	277
42	ZnO nanofluids: Green synthesis, characterization, and antibacterial activity. Materials Chemistry and Physics, 2010, 121, 198-201.	2.0	318
43	Ultrasound-assisted green synthesis of nanocrystalline ZnO in the ionic liquid [hmim][NTf2]. Ultrasonics Sonochemistry, 2009, 16, 120-123.	3.8	107
44	Green synthesis of ZnO nanoparticles in a room-temperature ionic liquid 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide. Journal of Physics and Chemistry of Solids, 2008, 69, 2057-2060.	1.9	35
45	Rheological and heat transfer behaviour of the ionic liquid, [C4mim][NTf2]. International Journal of Heat and Fluid Flow, 2008, 29, 149-155.	1.1	72
46	Prediction of Ionic Liquid Properties. II. Volumetric Properties as a Function of Temperature and Pressure. Journal of Chemical & Engineering Data, 2008, 53, 2133-2143.	1.0	139
47	Heat Capacities of Ionic Liquids as a Function of Temperature at 0.1 MPa. Measurement and Prediction. Journal of Chemical & Engineering Data, 2008, 53, 2148-2153.	1.0	173
48	Friedelâ^'Crafts Benzoylation of Anisole in Ionic Liquids: Catalysis, Separation, and Recycle Studies. Organic Process Research and Development, 2008, 12, 1156-1163.	1.3	19
49	Prediction of Ionic Liquid Properties. I. Volumetric Properties as a Function of Temperature at 0.1 MPa. Journal of Chemical & Engineering Data, 2008, 53, 716-726.	1.0	233
50	Thermal Conductivities of Ionic Liquids over the Temperature Range from 293 K to 353 K. Journal of Chemical & Engineering Data, 2007, 52, 1819-1823.	1.0	167
51	Kinetic Study of the Metal Triflate Catalyzed Benzoylation of Anisole in an Ionic Liquid. Industrial & Engineering Chemistry Research, 2006, 45, 6640-6647.	1.8	25
52	A catalytic and mechanistic study of the Friedel–Crafts benzoylation of anisole using zeolites in ionic liquids. Journal of Catalysis, 2004, 227, 44-52.	3.1	61