
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5357521/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Land use, habitat integrity, and aquatic insect assemblages in Central Amazonian streams. Hydrobiologia, 2008, 614, 117.	1.0	213
2	A social and ecological assessment of tropical land uses at multiple scales: the Sustainable Amazon Network. Philosophical Transactions of the Royal Society B: Biological Sciences, 2013, 368, 20120166.	1.8	133
3	Neotropical dragonflies (<scp>I</scp> nsecta: <scp>O</scp> donata) as indicators of ecological condition of small streams in the eastern <scp>A</scp> mazon. Austral Ecology, 2015, 40, 733-744.	0.7	114
4	Analysis of urban impacts on aquatic habitats in the central Amazon basin: Adult odonates as bioindicators of environmental quality. Ecological Indicators, 2015, 48, 303-311.	2.6	104
5	Odonata (Insecta) as a tool for the biomonitoring of environmental quality. Ecological Indicators, 2017, 81, 555-566.	2.6	100
6	Thresholds of freshwater biodiversity in response to riparian vegetation loss in the Neotropical region. Journal of Applied Ecology, 2020, 57, 1391-1402.	1.9	100
7	Effects of marginal vegetation removal on Odonata communities. Acta Limnologica Brasiliensia, 2013, 25, 10-18.	0.4	93
8	Effect of vegetation removal for road building on richness and composition of Odonata communities in Amazonia, Brazil. International Journal of Odonatology, 2013, 16, 135-144.	0.5	88
9	Integrated terrestrial-freshwater planning doubles conservation of tropical aquatic species. Science, 2020, 370, 117-121.	6.0	87
10	Effects of urbanization on stream habitats and associated adult dragonfly and damselfly communities in central Brazilian Amazonia. Landscape and Urban Planning, 2014, 127, 28-40.	3.4	86
11	Prey availability and temporal partitioning modulate felid coexistence in Neotropical forests. PLoS ONE, 2019, 14, e0213671.	1.1	86
12	Effects of Oil Palm Plantations on the Habitat Structure and Biota of Streams in Eastern Amazon. River Research and Applications, 2016, 32, 2081-2094.	0.7	78
13	Oil palm crops effects on environmental integrity of Amazonian streams and Heteropteran (Hemiptera) species diversity. Ecological Indicators, 2015, 52, 422-429.	2.6	74
14	Odonate biodiversity in terra-firme forest streamlets in Central Amazonia: on the relative effects of neutral and niche drivers at small geographical extents. Insect Conservation and Diversity, 2011, 4, 265-274.	1.4	72
15	The influence of habitat integrity and physical-chemical water variables on the structure of aquatic and semi-aquatic Heteroptera. Zoologia, 2010, 27, 918-930.	0.5	71
16	Toward a practical use of Neotropical odonates as bioindicators: Testing congruence across taxonomic resolution and life stages. Ecological Indicators, 2016, 61, 952-959.	2.6	70
17	Effects of human disturbance and riparian conditions on Odonata (Insecta) assemblages in eastern Amazon basin streams. Limnologica, 2017, 66, 31-39.	0.7	65
18	Positive associations among rare species and their persistence in ecological assemblages. Nature Ecology and Evolution, 2020, 4, 40-45.	3.4	65

#	Article	IF	CITATIONS
19	Chironomids as indicators in freshwater ecosystems: an assessment of the literature. Insect Conservation and Diversity, 2015, 8, 393-403.	1.4	63
20	Composição e riqueza de Odonata (Insecta) em riachos com diferentes nÃveis de conservação em um ecótone Cerrado-Floresta Amazônica. Acta Amazonica, 2014, 44, 223-233.	0.3	62
21	The Zygoptera/Anisoptera Ratio (Insecta: Odonata): a New Tool for Habitat Alterations Assessment in Amazonian Streams. Neotropical Entomology, 2019, 48, 552-560.	0.5	61
22	Influence of oil palm monoculture on the taxonomic and functional composition of aquatic insect communities in eastern Brazilian Amazonia. Ecological Indicators, 2017, 82, 478-483.	2.6	58
23	Dragonfly endemism in the Brazilian Amazon: competing hypotheses for biogeographical patterns. Biodiversity and Conservation, 2012, 21, 3507-3521.	1.2	57
24	Oil palm plantation is not a suitable environment for most forest specialist species of Odonata in Amazonia. Animal Conservation, 2018, 21, 526-533.	1.5	54
25	Odonate assemblage structure in relation to basin and aquatic habitat structure in Pantanal wetlands. Hydrobiologia, 2007, 579, 125-134.	1.0	52
26	Impacts of oil palm plantations on changes in environmental heterogeneity and Heteroptera (Gerromorpha and Nepomorpha) diversity. Journal of Insect Conservation, 2017, 21, 111-119.	0.8	50
27	Land cover, riparian zones and instream habitat influence stream fish assemblages in the eastern Amazon. Ecology of Freshwater Fish, 2019, 28, 317-329.	0.7	49
28	Are Odonata communities impacted by conventional or reduced impact logging?. Forest Ecology and Management, 2016, 382, 143-150.	1.4	46
29	Mayfly bioindicator thresholds for several anthropogenic disturbances in neotropical savanna streams. Ecological Indicators, 2017, 74, 276-284.	2.6	46
30	A multi-assemblage, multi-metric biological condition index for eastern Amazonia streams. Ecological Indicators, 2017, 78, 48-61.	2.6	45
31	Land use modifies Odonata diversity in streams of the Brazilian Cerrado. Journal of Insect Conservation, 2018, 22, 675-685.	0.8	43
32	Elements of metacommunity structure in Amazonian Zygoptera among streams under different spatial scales and environmental conditions. Ecology and Evolution, 2017, 7, 3190-3200.	0.8	42
33	The habitat integrity index and aquatic insect communities in tropical streams: A meta-analysis. Ecological Indicators, 2020, 116, 106495.	2.6	40
34	Response of aquatic insect assemblages to the activities of traditional populations in eastern Amazonia. Hydrobiologia, 2017, 802, 39-51.	1.0	36
35	Spatial, biogeographic and environmental predictors of diversity in <scp>A</scp> mazonian Zygoptera. Insect Conservation and Diversity, 2018, 11, 174-184.	1.4	35
36	Environmental and spatial processes determining Ephemeroptera (Insecta) structures in tropical streams. Annales De Limnologie, 2013, 49, 31-41.	0.6	34

#	Article	IF	CITATIONS
37	Longitudinal Distribution of the Functional Feeding Groups of Aquatic Insects in Streams of the Brazilian Cerrado Savanna. Neotropical Entomology, 2014, 43, 421-428.	0.5	34
38	The effects of oil palm plantations on the functional diversity of Amazonian birds. Journal of Tropical Ecology, 2016, 32, 510-525.	0.5	34
39	Effects of reducedâ€impact logging on physical habitat and fish assemblages in streams of Eastern Amazonia. Freshwater Biology, 2017, 62, 303-316.	1.2	34
40	Congruence and the Biomonitoring of Aquatic Ecosystems: Are Odonate Larvae or Adults the Most Effective for the Evaluation of Impacts. Neotropical Entomology, 2017, 46, 631-641.	0.5	34
41	Fluctuating Asymmetry and Wing Size of Argia tinctipennis Selys (Zygoptera: Coenagrionidae) in Relation to Riparian Forest Preservation Status. Neotropical Entomology, 2012, 41, 178-185.	0.5	32
42	Taxonomic sufficiency and effects of environmental and spatial drivers on aquatic insect community. Ecological Indicators, 2019, 107, 105624.	2.6	32
43	Towards Global Volunteer Monitoring of Odonate Abundance. BioScience, 2020, 70, 914-923.	2.2	32
44	Aquatic insects and their environmental predictors: a scientometric study focused on environmental monitoring in lotic environmental. Environmental Monitoring and Assessment, 2020, 192, 194.	1.3	32
45	Low forest-loss thresholds threaten Amazonian fish and macroinvertebrate assemblage integrity. Ecological Indicators, 2021, 127, 107773.	2.6	32
46	How oil palm cultivation is affecting mayfly assemblages in Amazon streams. Annales De Limnologie, 2016, 52, 35-45.	0.6	31
47	Trichoptera as bioindicators of habitat integrity in the PindaÃba river basin, Mato Grosso (Central) Tj ETQq1 10.	784314 rg 0.6	gBT_/Overlock
48	Understanding local perceptions of the impacts of large-scale oil palm plantations on ecosystem services in the Brazilian Amazon. Forest Policy and Economics, 2019, 109, 102007.	1.5	29
49	A scientometric study of the order Odonata with special attention to Brazil. International Journal of Odonatology, 2017, 20, 27-42.	0.5	28
50	Effects of oil palm plantations on habitat structure and fish assemblages in Amazon streams. Environmental Biology of Fishes, 2018, 101, 547-562.	0.4	28
51	Environmental changes promote larger species of Odonata (Insecta) in Amazonian streams. Ecological Indicators, 2019, 98, 179-192.	2.6	27
52	Functional diversity in studies of aquatic macroinvertebrates community. Scientometrics, 2017, 111, 1643-1656.	1.6	26
53	How Does Environmental Variation Affect the Distribution of Dragonfly Larvae (Odonata) in the Amazon-Cerrado Transition Zone in Central Brazil?. Neotropical Entomology, 2018, 47, 37-45.	0.5	26
54	Net primary productivity and seasonality of temperature and precipitation are predictors of the species richness of the Damselflies in the Amazon. Basic and Applied Ecology, 2019, 35, 45-53.	1.2	26

#	Article	IF	CITATIONS
55	Setting boundaries: Environmental and spatial effects on Odonata larvae distribution (Insecta). Anais Da Academia Brasileira De Ciencias, 2015, 87, 239-248.	0.3	25
56	The Response of Neotropical Dragonflies (Insecta: Odonata) to Local and Regional Abiotic Factors in Small Streams of the Amazon. Insects, 2019, 10, 446.	1.0	24
57	Impact of environmental changes on the behavioral diversity of the Odonata (Insecta) in the Amazon. Scientific Reports, 2021, 11, 9742.	1.6	24
58	Morphological and phylogenetic factors structure the distribution of damselfly and dragonfly species (Odonata) along an environmental gradient in Amazonian streams. Ecological Indicators, 2021, 122, 107257.	2.6	23
59	Taxonomic and Numerical Resolutions of Nepomorpha (Insecta: Heteroptera) in Cerrado Streams. PLoS ONE, 2014, 9, e103623.	1.1	23
60	Effects of oil palm plantations on anuran diversity in theÂeasternÂAmazon. Animal Biology, 2015, 65, 321-335.	0.6	22
61	Effects of habitat fragmentation on the persistence of medium and large mammal species in the Brazilian Savanna of GoiÃjs State. Biota Neotropica, 2018, 18, .	0.2	22
62	Structuring of Dragonfly Communities (Insecta: Odonata) in Eastern Amazon: Effects of Environmental and Spatial Factors in Preserved and Altered Streams. Insects, 2019, 10, 322.	1.0	22
63	Composição e distribuição da fauna de Ephemeroptera (Insecta) em área de transição Cerrado-Amazônia, Brasil. Iheringia - Serie Zoologia, 2010, 100, 301-308.	0.5	21
64	Ecological studies of mayflies (Insecta, Ephemeroptera): Can sampling effort be reduced without losing essential taxonomic and ecological information?. Acta Amazonica, 2018, 48, 137-145.	0.3	21
65	Role of environmental and spatial processes structuring fish assemblages in streams of the eastern Amazon. Marine and Freshwater Research, 2018, 69, 243.	0.7	21
66	To what extent can oil palm plantations in the Amazon support assemblages of Odonata larvae?. Insect Conservation and Diversity, 2019, 12, 448-458.	1.4	21
67	Aquatic macrophytes are important substrates for Libellulidae (Odonata) larvae and adults. Limnology, 2021, 22, 139-149.	0.8	21
68	Estrutura e composição da comunidade de Trichoptera (Insecta) de rios e áreas alagadas da bacia do rio Suiá-Miçú, Mato Grosso, Brasil. Iheringia - Serie Zoologia, 2011, 101, 173-180.	0.5	20
69	The role of remnants of Amazon savanna for the conservation of Neotropical mammal communities in eucalyptus plantations. Biodiversity and Conservation, 2014, 23, 3171-3184.	1.2	20
70	Baetidae (Insecta, Ephemeroptera) em córregos do cerrado matogrossense sob diferentes nÃveis de preservação ambiental. Iheringia - Serie Zoologia, 2011, 101, 181-190.	0.5	19
71	Effect of waterfalls and the flood pulse on the structure of fish assemblages of the middle Xingu River in the eastern Amazon basin. Brazilian Journal of Biology, 2015, 75, 78-94.	0.4	19
72	Little effects of reduced-impact logging on insect communities in eastern Amazonia. Environmental Monitoring and Assessment, 2016, 188, 441.	1.3	19

LEANDRO JUEN

#	Article	IF	CITATIONS
73	Effects of changes in the riparian forest on the butterfly community (Insecta: Lepidoptera) in Cerrado areas. Revista Brasileira De Entomologia, 2017, 61, 43-50.	0.1	19
74	Forest reserves and riparian corridors help maintain orchid bee (Hymenoptera: Euglossini) communities in oil palm plantations in Brazil. Apidologie, 2017, 48, 575-587.	0.9	19
75	Effect of oil palm on the Plecoptera and Trichoptera (Insecta) assemblages in streams of eastern Amazon. Environmental Monitoring and Assessment, 2017, 189, 393.	1.3	19
76	Coâ€occurrence patterns and morphological similarity of semiaquatic insects (Hemiptera:) Tj ETQq0 0 0 rgBT /Ov	verlock 10 1.1	Tf 50 622 Td
77	A social and ecological assessment of tropical land uses at multiple scales: the Sustainable Amazon Network. Philosophical Transactions of the Royal Society B: Biological Sciences, 2013, 368, 20130307.	1.8	18
78	The Potential Uses of Sarcosaprophagous Flesh Flies and Blowflies for the Evaluation of the Regeneration and Conservation of Forest Clearings: A Case Study in the Amazon Forest. Journal of Insect Science, 2014, 14, .	0.6	18
79	Anuran Beta Diversity in a Mosaic Anthropogenic Landscape in Transitional Amazon. Journal of Herpetology, 2015, 49, 75-82.	0.2	18
80	Functional responses of Odonata larvae to human disturbances in neotropical savanna headwater streams. Ecological Indicators, 2021, 133, 108367.	2.6	18
81	Contrasting associations between habitat conditions and stream aquatic biodiversity in a forest reserve and its surrounding area in the Eastern Amazon. Hydrobiologia, 2019, 826, 263-277.	1.0	17
82	Drivers of regional and local diversity of Amazonian stream Odonata. Insect Conservation and Diversity, 2019, 12, 251-261.	1.4	17
83	Influence of Local Variables and Landscape Metrics on Gerromorpha (Insecta: Heteroptera) Assemblages in Savanna Streams, Brazil. Neotropical Entomology, 2020, 49, 191-202.	0.5	17
84	The anthropic gradient determines the taxonomic diversity of aquatic insects in Amazonian streams. Hydrobiologia, 2021, 848, 1073-1085.	1.0	17
85	Riparian forests buffer the negative effects of cropland on macroinvertebrate diversity in lowland Amazonian streams. Hydrobiologia, 2021, 848, 3503-3520.	1.0	17

86	As variações na comunidade de Odonata (Insecta) em córregos podem ser explicadas pelo Paradoxo do Plâncton? Explicando a riqueza de espécies pela variabilidade ambiental. EntomoBrasilis, 2013, 6, 01-08.	0.2	17

 $_{87}$ Evaluating the Effects of Different Vegetation Types on Necrophagous Fly Communities (Diptera:) Tj ETQq1 1 0.784314 rgBT $_{17}^{1/2}$ Verloc

88	The effects of environmental integrity on the diversity of mayflies, Leptophlebiidae (Ephemeroptera), in tropical streams of the Brazilian Cerrado. Annales De Limnologie, 2014, 50, 325-334.	0.6	16
89	Are the adult odonate species found in a protected area different from those present in the surrounding zone? A case study from eastern Amazonia. Journal of Insect Conservation, 2016, 20, 643-652.	0.8	16
90	Influence of the proximity to the ocean and seasonality on the growth performance of farmed mangrove oysters (Crassostrea gasar) in tropical environments. Aquaculture, 2018, 495, 661-667.	1.7	16

#	Article	IF	CITATIONS
91	Evaluating the habitat integrity index as a potential surrogate for monitoring the water quality of streams in the cerrado-caatinga ecotone in northern Brazil. Environmental Monitoring and Assessment, 2019, 191, 562.	1.3	16
92	Patterns of coâ€occurrence and body size in dragonflies and damselflies (Insecta: Odonata) in preserved and altered Amazonian streams. Austral Entomology, 2021, 60, 436-450.	0.8	16
93	Metacommunity patterns of Amazonian Odonata: the role of environmental gradients and major rivers. PeerJ, 2019, 7, e6472.	0.9	16
94	Study of the mayfly order Ephemeroptera (Insecta) in Brazil: a scienciometric review. Revista Brasileira De Entomologia, 2013, 57, 359-364.	0.1	15
95	Regional Controls on Physical Habitat Structure of Amazon Streams. River Research and Applications, 2017, 33, 766-776.	0.7	15
96	Environmental drivers of the metacommunity structure of insects on the surface of tropical streams of the Amazon. Austral Ecology, 2020, 45, 586-595.	0.7	15
97	A new biomonitoring method using taxonomic families as substitutes for the suborders of the Odonata (Insecta) in Amazonian streams. Ecological Indicators, 2021, 124, 107388.	2.6	15
98	Land use changes disrupt streams and affect the functional feeding groups of aquatic insects in the Amazon. Journal of Insect Conservation, 2022, 26, 137-148.	0.8	15
99	Reducing the deleterious effects of logging on Ephemeroptera communities through reduced impact management. Hydrobiologia, 2018, 823, 191-203.	1.0	14
100	Wing dimorphism in semiaquatic bugs (Hemiptera, Heteroptera, Gerromorpha) as a tool for monitoring streams altered by oil palm plantation in the Amazon. Ecological Indicators, 2020, 117, 106707.	2.6	14
101	Odonata of the state of Maranhão, Brazil: Wallacean shortfall and priority areas for faunistic inventories. Biota Neotropica, 2019, 19, .	0.2	14
102	Protected areas are not effective for the conservation of freshwater insects in Brazil. Scientific Reports, 2021, 11, 21247.	1.6	13
103	Effect of Environmental and Temporal Factors on Patterns of Rarity of Ephemeroptera in Stream of the Brazilian Cerrado. Neotropical Entomology, 2017, 46, 29-35.	0.5	12
104	Relative roles of environmental and spatial constraints in assemblages of Chironomidae (Diptera) in Amazonian floodplain streams. Hydrobiologia, 2018, 820, 201-213.	1.0	12
105	Effects of Local Environmental and Landscape Variables on the Taxonomic and Trophic Composition of Aquatic Insects in a Rare Forest Formation of the Brazilian Amazon. Neotropical Entomology, 2020, 49, 821-831.	0.5	12
106	A nicheâ€based gap analysis for the conservation of odonate species in the Brazilian Amazon. Aquatic Conservation: Marine and Freshwater Ecosystems, 2021, 31, 1150-1157.	0.9	12
107	Tolerant semiaquatic bugs species (Heteroptera: Gerromorpha) are associated to pasture and conventional logging in the Eastern Amazon. Journal of Insect Conservation, 2021, 25, 555-567.	0.8	12
108	Site and species contribution to β-diversity in terrestrial mammal communities: Evidence from multiple Neotropical forest sites. Science of the Total Environment, 2021, 789, 147946.	3.9	12

#	Article	IF	CITATIONS
109	Morphological diversity of Odonata larvae (Insecta) and abiotic variables in oil palm plantation areas in the Eastern Amazon. Hydrobiologia, 2020, 847, 161-175.	1.0	11
110	The importance of common and the irrelevance of rare species for partition the variation of community matrix: implications for sampling and conservation. Scientific Reports, 2020, 10, 19777.	1.6	11
111	Response of the Zygopteran Community (Odonata: Insecta) to Change in Environmental Integrity Driven by Urbanization in Eastern Amazonian Streams. Ecologies, 2021, 2, 150-163.	0.7	11
112	Sampling efficiency of a protocol to measure Odonata diversity in tropical streams. PLoS ONE, 2021, 16, e0248216.	1.1	11
113	The Zygoptera/Anisoptera ratio as a tool to assess anthropogenic changes in Atlantic Forest streams. Biodiversity and Conservation, 2021, 30, 1315-1329.	1.2	11
114	An estimate of the potential number of mayfly species (Ephemeroptera, Insecta) still to be described in Brazil. Revista Brasileira De Entomologia, 2015, 59, 147-153.	0.1	10
115	Land use change causes environmental homogeneity and low beta-diversity in Heteroptera of streams. Annales De Limnologie, 2020, 56, 9.	0.6	10
116	The effects of cattle ranching on the communities of necrophagous flies (Diptera: Calliphoridae,) Tj ETQq0 0 0 rg 705-717.	BT /Overlo 0.8	ock 10 Tf 50 4 10
117	Assessing habitat quality on alpha and beta diversity of Odonata larvae (Insect) in logging areas in Amazon forest. Hydrobiologia, 2021, 848, 1147-1161.	1.0	10
118	Distribuição de Heteroptera Aquáticos (Insecta) em Diferentes Tipos de Substratos de Córregos do Cerrado Matogrossense. EntomoBrasilis, 2013, 6, 132-140.	0.2	10
119	Response of aquatic insects to an environmental gradient in Amazonian streams. Environmental Monitoring and Assessment, 2021, 193, 763.	1.3	10
120	The relationship between bird distribution patterns and environmental factors in an ecotone area of northeast Brazil. Journal of Arid Environments, 2017, 140, 6-13.	1.2	9
121	The influence of small hydroelectric power plants on the richness and composition of Odonata species in the Brazilian Savanna. International Journal of Odonatology, 2018, 21, 33-44.	0.5	9
122	Differences in land use modify Odonata assemblages in the Cerrado-Caatinga ecotone. Acta Limnologica Brasiliensia, 0, 32, .	0.4	9
123	Composição e riqueza de espécies de anfÃbios anuros em três diferentes habitat em um agrossistema no Cerrado do Brasil central. Biota Neotropica, 2013, 13, 124-132.	1.0	7
124	The influence of biogeographic history on the functional and phylogenetic diversity of passerine birds in savannas and forests of the Brazilian Amazon. Ecology and Evolution, 2018, 8, 3617-3627.	0.8	7
125	Effects of mining and reduced turnover of Ephemeroptera (Insecta) in streams of the Eastern Brazilian Amazon. Journal of Insect Conservation, 2020, 24, 1061-1072.	0.8	7
126	Variation in the diversity of semiaquatic bugs (Insecta: Heteroptera: Gerromorpha) in altered and preserved veredas. Hydrobiologia, 2020, 847, 3497-3510.	1.0	7

#	Article	IF	CITATIONS
127	How Habitat Filtering Can Affect Taxonomic and Functional Composition of Aquatic Insect Communities in Small Amazonian Streams. Neotropical Entomology, 2020, 49, 652-661.	0.5	7
128	Litter decomposition of exotic and native plant species of agricultural importance in Amazonian streams. Limnology, 2021, 22, 289-297.	0.8	7
129	A matter of suborder: are Zygoptera and Anisoptera larvae influenced by riparian vegetation in Neotropical Savanna streams?. Hydrobiologia, 2021, 848, 4433-4443.	1.0	7
130	Concordance between Ephemeroptera and Trichoptera assemblage in streams from Cerrado – Amazonia transition. Annales De Limnologie, 2013, 49, 129-138.	0.6	6
131	Vulnerability of Phyllocycla Species (Odonata: Gomphidae) to Current and Planned Anthropic Activities by the Brazilian Government. Neotropical Entomology, 2020, 49, 24-32.	0.5	6
132	Measuring stream habitat conditions: Can remote sensing substitute for field data?. Science of the Total Environment, 2021, 788, 147617.	3.9	6
133	Sampling Methods for Dragonflies and Damselflies. , 2021, , 223-240.		6
134	Species turnover in Amazonian frogs: low predictability and large differences among forests. Biotropica, 2017, 49, 695-705.	0.8	5
135	Effect of environmental factors on microbiological quality of oyster farming in Amazon estuaries. Aquaculture Reports, 2020, 18, 100437.	0.7	5
136	Dams Change Beta Diversity of Aquatic Communities in the Veredas of the Brazilian Cerrado. Frontiers in Ecology and Evolution, 2021, 9, .	1.1	5
137	Changes of Phylogenetic and Taxonomic Diversity of Odonata (Insecta) in Response to Land Use in Amazonia. Forests, 2021, 12, 1061.	0.9	5
138	Odonate ethodiversity as a bioindicator of anthropogenic impact. International Journal of Odonatology, 0, 24, 149-157.	0.5	5
139	Congruence and responsiveness in the taxonomic compositions of Amazonian aquatic macroinvertebrate and fish assemblages. Hydrobiologia, 2022, 849, 2281-2298.	1.0	5
140	Patterns and metacommunity structure of aquatic insects (Trichoptera) in Amazonian streams depend on the environmental conditions. Hydrobiologia, 2022, 849, 2831-2843.	1.0	5
141	Reproductive success of <i>Cardiopetalum calophyllum</i> (Annonaceae) treelets in fragments of Brazilian savanna. Journal of Tropical Ecology, 2012, 28, 317-320.	0.5	4
142	Effects of pond structural complexity on the reproduction of Physalaemus ephippifer (Anura,) Tj ETQq0 0 0 rgBT	/Oyerlock	10 ₄ Tf 50 142
143	Effect of environmental factors on the fatty acid profiles and physicochemical composition of oysters (<i>Crassostrea gasar</i>) in Amazon estuarine farming. Aquaculture Research, 2020, 51, 2336-2348.	0.9	4
144	Effects of Environmental Variables and Habitat Integrity on the Structure of the Aquatic Insect Communities of Streams in the Cerrado-Caatinga Ecotone in Northeastern Brazil. Neotropical Entomology, 2021, 50, 21-31.	0.5	4

#	Article	IF	CITATIONS
145	Diversity of Necrophagous Flies (Diptera: Calliphoridae, Mesembrinellidae, and Sarcophagidae) in Anthropogenic and Preserved Environments of Five Different Phytophysiognomies in Northeastern Brazil. Neotropical Entomology, 2021, 50, 537-550.	0.5	4
146	Necrophagous flies (Diptera: Calliphoridae and Sarcophagidae) as indicators of the conservation or anthropization of environments in eastern Amazonia, Brazil. Journal of Insect Conservation, 2021, 25, 719-732.	0.8	4
147	Effects of Environmental Changes on Gerromorpha (Heteroptera: Hemiptera) Communities from Amazonian Streams. Hydrobiology, 2022, 1, 111-121.	0.9	4
148	Detecting Darwinian Shortfalls in the Amazonian Odonata. Neotropical Entomology, 2022, , .	0.5	4
149	First occurrence of Anacroneuria singularis Righi-Cavallaro & Lecci, 2010Â(Plecoptera: Perlidae) in Rondônia, western Amazonia, Brazil. Zootaxa, 2019, 4544, 446.	0.2	3
150	Influence of biotic and abiotic factors on adult Odonata (Insecta) in Amazon streams. Animal Biology, 2020, 71, 67-84.	0.6	3
151	Seasonal fluctuations in the structure of the larval odonate community of a stream in the Cerrado–Amazon forest transition zone. Aquatic Ecology, 2021, 55, 861-873.	0.7	3
152	Environmental variation in Amazonian interfluves and its effects on local mayfly assemblages. Hydrobiologia, 2021, 848, 4075-4092.	1.0	3
153	Efeito da Integridade Ambiental Sobre a Assimetria Flutuante em Erythrodiplax basalis (Libellulidae:) Tj ETQq1	1 0.784314 0.2	rgॺॖॖॖॖT /Overlo
154	Rockpool ichthyofauna of Amazon coastal zone: spatial and environmental effects on species distribution. Marine and Freshwater Research, 2017, 68, 1137.	0.7	2
155	Evaluating the biodiversity quality response of tropical odonata to tree clearance. International Journal of Tropical Insect Science, 2019, 39, 45-52.	0.4	2
156	Glutathione S-transferase activity in Mnesarete aenea (Odonata), Campylocia anceps (Ephemeroptera), and Cylindrostethus palmaris (Hemiptera) from forest and oil palm plantation areas in the Eastern Amazon. Ecological Indicators, 2020, 118, 106770.	2.6	2
157	A monocultura de palma de dendê Elaeis guineenses Jacq. e a biodiversidade de riachos amazônicos. , 2021, , 131-161.		2
158	Synopsis of Lestes from Brazil with description of Lestes demarcoi sp. nov. (Zygoptera: Lestidae). Zootaxa, 2021, 4990, 511-541.	0.2	2
159	Environmental variables affect the diversity of adult damselflies (Odonata: Zygoptera) in western Amazonia. International Journal of Odonatology, 0, , 108-121.	0.5	2
160	Erythrodiplax nataliae sp. nov., a new species for the state of Mato Grosso, Brazil. Anais Da Academia Brasileira De Ciencias, 2020, 92, e20181149.	0.3	2
161	Odonates in warm regions of south america largely do not follow Rapoport's rule. Biodiversity and Conservation, 0, , 1.	1.2	2
162	Habitat conditions in streams influence Odonata larval assemblages in the eastern Amazon. International Journal of Odonatology, 0, 25, 22-30.	0.5	2

#	Article	IF	CITATIONS
163	Mayfly assemblage structure of the Pantanal Mortes–Araguaia flood plain. Marine and Freshwater Research, 2017, 68, 2156.	0.7	1
164	Congruence of the composition of Odonata between dry and rainy seasons in the Maranhense Cerrado. International Journal of Odonatology, 2020, 23, 305-314.	0.5	1
165	In Neotropical savannas, altitude affects the diversity of the Anisoptera but not the Zygoptera (Insecta: Odonata). Marine and Freshwater Research, 2021, 72, 766.	0.7	1
166	EMERGENCE TRAP FOR THE COLLECTION OF EXUVIAE AND ADULT OF ODONATA. Oecologia Australis, 2020, 24, 742-747.	0.1	1
167	After 10 years the myth of Crotalaria spp. and dragonflies remains alive. Biota Neotropica, 2020, 20, .	0.2	1
168	Heteragrion calafatiensis (Odonata: Heteragrionidae) sp. nov. from Northern Brazil. Zootaxa, 2022, 5124, 223-229.	0.2	1
169	Effects of seasonality and environmental change on an Andean damselfly Mesamphiagrion laterale (Odonata: Coenagrionidae). Journal of Insect Conservation, 2020, 24, 499-511.	0.8	0
170	Description of nymph of Brasilocaenis atawallpa Lima, Molineri, Vieira, Pinheiro & Salles, 2019 (Ephemeroptera: Caenidae) and notes on its taxonomic status. Zootaxa, 2021, 5027, 136-144.	0.2	0