
Tatjana N Parac Vogt

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5357496/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Expanding the Scope of Polyoxometalates as Artificial Proteases towards Hydrolysis of Insoluble Proteins. Chemistry - A European Journal, 2022, 28, .	1.7	13
2	Which factors govern the adsorption of peptides to Zr(<scp>iv</scp>)-based metal–organic frameworks?. Materials Advances, 2022, 3, 2475-2487.	2.6	7
3	Versatile post-functionalisation strategy for the formation of modular organic–inorganic polyoxometalate hybrids. Chemical Science, 2022, 13, 2891-2899.	3.7	7
4	Hierarchical Self-Assembly of a Supramolecular Protein-Metal Cage Encapsulating a Polyoxometalate Guest. Crystal Growth and Design, 2022, 22, 1515-1520.	1.4	2
5	Zirconium oxo clusters as discrete molecular catalysts for the direct amide bond formation. Catalysis Science and Technology, 2022, 12, 3190-3201.	2.1	11
6	Synergistic Effect of Sorption and Hydrolysis by NU-1000 Nanostructures for Removal and Detoxification of Chlorpyrifos. ACS Applied Nano Materials, 2022, 5, 3312-3324.	2.4	7
7	A zirconium metal-organic framework with SOC topological net for catalytic peptide bond hydrolysis. Nature Communications, 2022, 13, 1284.	5.8	32
8	Understanding the Role of Surfactants in the Interaction and Hydrolysis of Myoglobin by Zrâ€MOFâ€808. European Journal of Inorganic Chemistry, 2022, 2022, .	1.0	4
9	Front Cover: Understanding the Role of Surfactants in the Interaction and Hydrolysis of Myoglobin by Zrâ€MOFâ€808 (Eur. J. Inorg. Chem. 20/2022). European Journal of Inorganic Chemistry, 2022, 2022, .	1.0	0
10	Inorganic Radiolabeled Nanomaterials in Cancer Therapy: A Review. ACS Applied Nano Materials, 2022, 5, 8680-8709.	2.4	11
11	Ultrasmall iron oxide nanoparticles functionalized with BODIPY derivatives as potential bimodal probes for MRI and optical imaging. Nano Select, 2021, 2, 406-416.	1.9	3
12	Homogeneous Metal Catalysts with Inorganic Ligands: Probing Ligand Effects in Lewis Acid Catalyzed Direct Amide Bond Formation. ACS Catalysis, 2021, 11, 271-277.	5.5	19
13	Visualization and characterization of metallo-aggregates using multi-photon microscopy. RSC Advances, 2021, 11, 657-661.	1.7	0
14	Expanding the reactivity of inorganic clusters towards proteins: the interplay between the redox and hydrolytic activity of Ce(<scp>iv</scp>)-substituted polyoxometalates as artificial proteases. Chemical Science, 2021, 12, 10655-10663.	3.7	11
15	The Dawn of Metal-Oxo Clusters as Artificial Proteases: From Discovery to the Present and Beyond. Accounts of Chemical Research, 2021, 54, 1673-1684.	7.6	48
16	Broadening the Scope of Polyoxometalates as Artificial Proteases in Surfactant Solutions: Hydrolysis of Ovalbumin by Zr(IV)-Substituted Keggin Complex. Inorganics, 2021, 9, 22.	1.2	7
17	Solution Dynamics of Hybrid Anderson–Evans Polyoxometalates. Inorganic Chemistry, 2021, 60, 10215-10226.	1.9	14
18	Bimetallic Ce/Zr UiO-66 Metal–Organic Framework Nanostructures as Peptidase and Oxidase Nanozymes. ACS Applied Nano Materials, 2021, 4, 5748-5757.	2.4	25

#	Article	IF	CITATIONS
19	Crystal structures of Scone: pseudosymmetric folding of a symmetric designer protein. Acta Crystallographica Section D: Structural Biology, 2021, 77, 933-942.	1.1	2
20	En Route to a Heterogeneous Catalytic Direct Peptide Bond Formation by Zr-Based Metal–Organic Framework Catalysts. ACS Catalysis, 2021, 11, 7647-7658.	5.5	31
21	The forgotten chemistry of group(IV) metals: A survey on the synthesis, structure, and properties of discrete Zr(IV), Hf(IV), and Ti(IV) oxo clusters. Coordination Chemistry Reviews, 2021, 438, 213886.	9.5	40
22	Hybrid catalyst with combined Lewis and BrÃ,nsted acidity based on ZrIV substituted polyoxometalate grafted on mesoporous MCM-41 silica for esterification of renewable levulinic acid. Microporous and Mesoporous Materials, 2021, 323, 111203.	2.2	17
23	Monodispersed MOF-808 Nanocrystals Synthesized via a Scalable Room-Temperature Approach for Efficient Heterogeneous Peptide Bond Hydrolysis. Chemistry of Materials, 2021, 33, 7057-7066.	3.2	51
24	Heterogeneous nanozymatic activity of Hf oxo-clusters embedded in a metal–organic framework towards peptide bond hydrolysis. Nanoscale, 2021, 13, 12298-12305.	2.8	8
25	Shape and Size Complementarity-Induced Formation of Supramolecular Protein Assemblies with Metal-Oxo Clusters. Crystal Growth and Design, 2021, 21, 1307-1313.	1.4	15
26	Kinetic and Interaction Studies of Adenosine-5′-Triphosphate (ATP) Hydrolysis with Polyoxovanadates. Metals, 2021, 11, 1678.	1.0	3
27	Enhancing the Catalytic Activity of MOFâ€808 Towards Peptide Bond Hydrolysis through Synthetic Modulations. Chemistry - A European Journal, 2021, 27, 17230-17239.	1.7	16
28	Modeling of Nanomolecular and Reticular Architectures with 6-fold Grooved, Programmable Interlocking Disks. Journal of Chemical Education, 2020, 97, 289-294.	1.1	6
29	Hybrid polyoxometalates as post-functionalization platforms: from fundamentals to emerging applications. Chemical Society Reviews, 2020, 49, 382-432.	18.7	279
30	Mechanism of the highly effective peptide bond hydrolysis by MOF-808 catalyst under biologically relevant conditions. Physical Chemistry Chemical Physics, 2020, 22, 25136-25145.	1.3	22
31	Selective Hydrolysis of Terminal Glycosidic Bond in αâ€1â€Acid Glycoprotein Promoted by Keggin and Wells–Dawson Type Heteropolyacids. Chemistry - A European Journal, 2020, 26, 16463-16471.	1.7	4
32	Selective Hydrolysis of Transferrin Promoted by Zr-Substituted Polyoxometalates. Molecules, 2020, 25, 3472.	1.7	15
33	Nanozymatic Activity of UiO-66 Metal–Organic Frameworks: Tuning the Nanopore Environment Enhances Hydrolytic Activity toward Peptide Bonds. ACS Applied Nano Materials, 2020, 3, 8931-8938.	2.4	42
34	Hybrid assemblies of a symmetric designer protein and polyoxometalates with matching symmetry. Chemical Communications, 2020, 56, 11601-11604.	2.2	20
35	Metalâ€Addenda Substitution in Plenary Polyoxometalates and in Their Modular Transition Metal Analogues. European Journal of Inorganic Chemistry, 2020, 2020, 2559-2572.	1.0	11
36	Redox Activity of Ce(IV)-Substituted Polyoxometalates toward Amino Acids and Peptides. Inorganic Chemistry, 2020, 59, 10569-10577.	1.9	19

#	Article	IF	CITATIONS
37	A new acetylcholinesterase allosteric site responsible for binding voluminous negatively charged molecules – the role in the mechanism of AChE inhibition. European Journal of Pharmaceutical Sciences, 2020, 151, 105376.	1.9	20
38	Hydrolysis of Peptide Bonds in Protein Micelles Promoted by a Zirconium(Ⅳ)‣ubstituted Polyoxometalate as an Artificial Protease. Chemistry - A European Journal, 2020, 26, 11170-11179.	1.7	13
39	Discrete Hf ₁₈ Metalâ€oxo Cluster as a Heterogeneous Nanozyme for Siteâ€Specific Proteolysis. Angewandte Chemie - International Edition, 2020, 59, 9094-9101.	7.2	31
40	Discrete Hf 18 Metalâ€oxo Cluster as a Heterogeneous Nanozyme for Siteâ€6pecific Proteolysis. Angewandte Chemie, 2020, 132, 9179-9186.	1.6	7
41	A Bis-organosilyl-Functionalized Wells–Dawson Polyoxometalate as a Platform for Facile Amine Postfunctionalization. Inorganic Chemistry, 2020, 59, 10146-10152.	1.9	5
42	Exploring polyoxometalates as non-destructive staining agents for contrast-enhanced microfocus computed tomography of biological tissues. Acta Biomaterialia, 2020, 105, 253-262.	4.1	25
43	Interplay between structural parameters and reactivity of Zr ₆ -based MOFs as artificial proteases. Chemical Science, 2020, 11, 6662-6669.	3.7	38
44	Recent Advances in Lanthanide Based Nano-Architectures as Probes for Ultra High-Field Magnetic Resonance Imaging. Current Medicinal Chemistry, 2020, 27, 352-361.	1.2	11
45	Hydrolysis of transferrin promoted by a cerium(IV)-Keggin polyoxometalate. Polyhedron, 2019, 170, 570-575.	1.0	13
46	Highâ€Field MRI Contrast Agents and their Synergy with Optical Imaging: the Evolution from Single Molecule Probes towards Nanoâ€architectures. Chemistry - A European Journal, 2019, 25, 13838-13847.	1.7	11
47	High-resolution contrast-enhanced microCT reveals the true three-dimensional morphology of the murine placenta. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 13927-13936.	3.3	47
48	Water-Tolerant and Atom Economical Amide Bond Formation by Metal-Substituted Polyoxometalate Catalysts. ACS Catalysis, 2019, 9, 10245-10252.	5.5	49
49	Chemical Mimics of Aspartateâ€Directed Proteases: Predictive and Strictly Specific Hydrolysis of a Globular Protein at Aspâ^X Sequence Promoted by Polyoxometalate Complexes Rationalized by a Combined Experimental and Theoretical Approach. Chemistry - A European Journal, 2019, 25, 14370-14381.	1.7	24
50	Editorial: Advances in the Development of Artificial Metalloenzymes. Frontiers in Chemistry, 2019, 7, 599.	1.8	2
51	Ovariectomy increases RANKL protein expression in bone marrow adipocytes of C3H/HeJ mice. American Journal of Physiology - Endocrinology and Metabolism, 2019, 317, E1050-E1054.	1.8	21
52	Editorial: Polyoxometalates in Catalysis, Biology, Energy and Materials Science. Frontiers in Chemistry, 2019, 7, 646.	1.8	20
53	Programmable Interlocking Disks: Bottom-Up Modular Assembly of Chemically Relevant Polyhedral and Reticular Structural Models. Journal of Chemical Education, 2019, 96, 601-605.	1.1	9
54	Frontispiece: Highâ€Field MRI Contrast Agents and their Synergy with Optical Imaging: the Evolution from Single Molecule Probes towards Nanoâ€architectures. Chemistry - A European Journal, 2019, 25, .	1.7	0

#	Article	IF	CITATIONS
55	The effect of PPARÎ ³ inhibition on bone marrow adipose tissue and bone in C3H/HeJ mice. American Journal of Physiology - Endocrinology and Metabolism, 2019, 316, E96-E105.	1.8	15
56	Amphiphilic Nanoaggregates with Bimodal MRI and Optical Properties Exhibiting Magnetic Field Dependent Switching from Positive to Negative Contrast Enhancement. ACS Applied Materials & Interfaces, 2019, 11, 5752-5761.	4.0	4
57	Noncovalent Complexes Formed between Metalâ€6ubstituted Polyoxometalates and Hen Egg White Lysozyme. European Journal of Inorganic Chemistry, 2019, 2019, 506-511.	1.0	18
58	Interactions between polyoxometalates and biological systems: from drug design to artificial enzymes. Current Opinion in Biotechnology, 2019, 58, 92-99.	3.3	58
59	Hydrolysis of chemically distinct sites of human serum albumin by polyoxometalate: A hybrid QM/MM (ONIOM) study. Journal of Computational Chemistry, 2019, 40, 51-61.	1.5	17
60	Superactivity of MOF-808 toward Peptide Bond Hydrolysis. Journal of the American Chemical Society, 2018, 140, 6325-6335.	6.6	120
61	A Magnetic Chameleon: Biocompatible Lanthanide Fluoride Nanoparticles with Magnetic Field Dependent Tunable Contrast Properties as a Versatile Contrast Agent for Low to Ultrahigh Field MRI and Optical Imaging in Biological Window. Chemistry - A European Journal, 2018, 24, 7388-7397.	1.7	23
62	Simultaneous three-dimensional visualization of mineralized and soft skeletal tissues by a novel microCT contrast agent with polyoxometalate structure. Biomaterials, 2018, 159, 1-12.	5.7	70
63	Effect of [Zr(α-PW11O39)2]10â^ Polyoxometalate on the Self-Assembly of Surfactant Molecules in Water Studied by Fluorescence and DOSY NMR Spectroscopy. Inorganics, 2018, 6, 112.	1.2	7
64	Drawing on biology to inspire molecular design: a redox-responsive MRI probe based on Gd(<scp>iii</scp>)-nicotinamide. Chemical Communications, 2018, 54, 12986-12989.	2.2	8
65	Direct observation of the Zr ^{IV} interaction with the carboxamide bond in a noncovalent complex between Hen Egg White Lysozyme and a Zr-substituted Keggin polyoxometalate. Acta Crystallographica Section C, Structural Chemistry, 2018, 74, 1348-1354.	0.2	17
66	Selective Hydrolysis of Ovalbumin Promoted by Hf(IV)-Substituted Wells-Dawson-Type Polyoxometalate. Frontiers in Chemistry, 2018, 6, 614.	1.8	19
67	Selectivity and Reactivity of ZrIV and CeIV Substituted Keggin Type Polyoxometalates Toward Cytochrome c in Surfactant Solutions. Frontiers in Chemistry, 2018, 6, 372.	1.8	24
68	Proteinâ€Assisted Formation and Stabilization of Catalytically Active Polyoxometalate Species. Chemistry - A European Journal, 2018, 24, 10099-10108.	1.7	45
69	Investigating Polyoxometalate–Protein Interactions at Chemically Distinct Binding Sites. Journal of Physical Chemistry B, 2018, 122, 7219-7232.	1.2	27
70	Keggin Structure, QuÅ•VÄdis?. Frontiers in Chemistry, 2018, 6, 346.	1.8	49
71	A Magnetic Chameleon: Biocompatible Lanthanide Fluoride Nanoparticles with Magnetic Field Dependent Tunable Contrast Properties as a Versatile Contrast Agent for Low to Ultrahigh Field MRI and Optical Imaging in Biological Window. Chemistry - A European Journal, 2018, 24, 7277-7277.	1.7	3
72	Amphiphilic complexes of Ho(<scp>iii</scp>), Dy(<scp>iii</scp>), Tb(<scp>iii</scp>) and Eu(<scp>iii</scp>) for optical and high field magnetic resonance imaging. Dalton Transactions, 2018, 47, 10646-10653.	1.6	10

#	Article	IF	CITATIONS
73	Na/K-ATPase as a target for anticancer metal based drugs: insights into molecular interactions with selected gold(<scp>iii</scp>) complexes. Metallomics, 2017, 9, 292-300.	1.0	13
74	A Simple Nucleophilic Substitution as a Versatile Postfunctionalization Method for the Coupling of Nucleophiles to an Anderson-Type Polyoxometalate. Inorganic Chemistry, 2017, 56, 3095-3101.	1.9	19
75	Highly Selective and Tunable Protein Hydrolysis by a Polyoxometalate Complex in Surfactant Solutions: A Step toward the Development of Artificial Metalloproteases for Membrane Proteins. ACS Omega, 2017, 2, 2026-2033.	1.6	23
76	Polyoxometalates as artificial nucleases: hydrolytic cleavage of DNA promoted by a highly negatively charged Zr ^{IV} -substituted Keggin polyanion. Chemical Communications, 2017, 53, 617-620.	2.2	34
77	Polyoxometalates as sialidase mimics: selective and non-destructive removal of sialic acid from a glycoprotein promoted by phosphotungstic acid. Chemical Communications, 2017, 53, 10600-10603.	2.2	12
78	Spectroscopic Study of the Interaction between Horse Heart Myoglobin and Zirconium(IV) ubstituted Polyoxometalates as Artificial Proteases. ChemPhysChem, 2017, 18, 2451-2458.	1.0	34
79	A mild post-functionalization method for the vanadium substituted P ₂ W ₁₅ V ₃ Wells–Dawson polyoxometalate based on a copper catalyzed azide–alkyne cycloaddition. Dalton Transactions, 2017, 46, 10215-10219.	1.6	16
80	The Development of Multimodal Nanoparticles for an Early Detection of Tumors. , 2017, , .		0
81	Investigating the binding mechanism of polyoxometalates towards proteins. Acta Crystallographica Section A: Foundations and Advances, 2017, 73, C732-C732.	0.0	Ο
82	Kinetic studies of phosphoester hydrolysis promoted by a dimeric tetrazirconium(<scp>iv</scp>) Wells–Dawson polyoxometalate. Dalton Transactions, 2016, 45, 12174-12180.	1.6	20
83	Ultrasmall Superparamagnetic Iron Oxide Nanoparticles with Europium(III) DO3A as a Bimodal Imaging Probe. Chemistry - A European Journal, 2016, 22, 4521-4527.	1.7	17
84	Interaction Study and Reactivity of Zr ^{IV} â€Substituted Wells–Dawson Polyoxometalate towards Hydrolysis of Peptide Bonds in Surfactant Solutions. Chemistry - A European Journal, 2016, 22, 3775-3784.	1.7	30
85	Detailed Mechanism of Phosphoanhydride Bond Hydrolysis Promoted by a Binuclear Zr ^{IV} -Substituted Keggin Polyoxometalate Elucidated by a Combination of ³¹ P, ³¹ P DOSY, and ³¹ P EXSY NMR Spectroscopy. Inorganic Chemistry, 2016, 55, 4864-4873.	1.9	24
86	Tuning the Selectivity and Reactivity of Metalâ€Substituted Polyoxometalates as Artificial Proteases by Varying the Nature of the Embedded Lewis Acid Metal Ion. European Journal of Inorganic Chemistry, 2016, 2016, 5098-5105.	1.0	39
87	Phosphate Ester Bond Hydrolysis Promoted by Lanthanide-Substituted Keggin-type Polyoxometalates Studied by a Combined Experimental and Density Functional Theory Approach. Inorganic Chemistry, 2016, 55, 9898-9911.	1.9	23
88	Molecular Insight from DFT Computations and Kinetic Measurements into the Steric Factors Influencing Peptide Bond Hydrolysis Catalyzed by a Dimeric Zr(IV)-Substituted Keggin Type Polyoxometalate. Inorganic Chemistry, 2016, 55, 9316-9328.	1.9	30
89	Gallium(III)-Containing, Sandwich-Type Heteropolytungstates: Synthesis, Solution Characterization, and Hydrolytic Studies toward Phosphoester and Phosphoanhydride Bond Cleavage. Inorganic Chemistry, 2016, 55, 9204-9211.	1.9	21
90	Probing Polyoxometalate–Protein Interactions Using Molecular Dynamics Simulations. Chemistry - A European Journal, 2016, 22, 15280-15289.	1.7	50

#	Article	IF	CITATIONS
91	Probing Polyoxometalate-Protein Interactions Using Molecular Dynamics Simulations. Chemistry - A European Journal, 2016, 22, 15157-15157.	1.7	1
92	Following the stability of amphiphilic nanoaggregates by using intermolecular energy transfer. Chemical Communications, 2016, 52, 13385-13388.	2.2	3
93	Multifunctional β-NaGdF ₄ :Ln ³⁺ (Ln = Yb, Er, Dy) nanoparticles with NIR to visible upconversion and high transverse relaxivity: a potential bimodal contrast agent for high-field MRI and optical imaging. RSC Advances, 2016, 6, 61443-61448.	1.7	20
94	Magnetofluorescent micelles incorporating Dy ^{III} –DOTA as potential bimodal agents for optical and high field magnetic resonance imaging. Dalton Transactions, 2016, 45, 4791-4801.	1.6	14
95	Influence of the amino acid side chain on peptide bond hydrolysis catalyzed by a dimeric Zr(<scp>iv</scp>)-substituted Keggin type polyoxometalate. New Journal of Chemistry, 2016, 40, 976-984.	1.4	19
96	Ln ₁₂ â€Containing 60â€Tungstogermanates: Synthesis, Structure, Luminescence, and Magnetic Studies. Chemistry - A European Journal, 2015, 21, 18168-18176.	1.7	46
97	Highly Amino Acid Selective Hydrolysis of Myoglobin at Aspartate Residues as Promoted by Zirconium(IV)â€6ubstituted Polyoxometalates. Angewandte Chemie - International Edition, 2015, 54, 7391-7394.	7.2	94
98	Structural Characterization of the Complex between Hen Eggâ€White Lysozyme and Zr ^{IV} â€Substituted Keggin Polyoxometalate as Artificial Protease. Chemistry - A European Journal, 2015, 21, 11692-11695.	1.7	49
99	Magnetofluorescent Nanoaggregates Incorporating Terbium(III) Complexes as Potential Bimodal Agents for Magnetic Resonance and Optical Imaging. European Journal of Inorganic Chemistry, 2015, 2015, 4572-4578.	1.0	8
100	Luminescence and Relaxometric Properties of Heteropolymetallic Metallostar Complexes with Selectively Incorporated Lanthanide(III) Ions. European Journal of Inorganic Chemistry, 2015, 2015, 4207-4216.	1.0	4
101	Understanding the Regioselective Hydrolysis of Human Serum Albumin by Zr(IV)-Substituted Polyoxotungstates Using Tryptophan Fluorescence Spectroscopy. Inorganics, 2015, 3, 230-245.	1.2	22
102	Gadolinium(III)-DOTA Complex Functionalized with BODIPY as a Potential Bimodal Contrast Agent for MRI and Optical Imaging. Inorganics, 2015, 3, 516-533.	1.2	13
103	Potential theranostic and multimodal iron oxide nanoparticles decorated with rhenium–bipyridine and –phenanthroline complexes. Journal of Materials Chemistry B, 2015, 3, 4370-4376.	2.9	13
104	Assembly of near infra-red emitting upconverting nanoparticles and multiple Gd(iii)-chelates as a potential bimodal contrast agent for MRI and optical imaging. Dalton Transactions, 2015, 44, 11331-11339.	1.6	19
105	Multinuclear Diffusion NMR Spectroscopy and DFT Modeling: A Powerful Combination for Unraveling the Mechanism of Phosphoester Bond Hydrolysis Catalyzed by Metalâ€Substituted Polyoxometalates. Chemistry - A European Journal, 2015, 21, 4428-4439.	1.7	47
106	Selective hydrolysis of oxidized insulin chain B by a Zr(<scp>iv</scp>)-substituted Wells–Dawson polyoxometalate. Dalton Transactions, 2015, 44, 1539-1548.	1.6	51
107	Facile azide formation via diazotransfer reaction in a copper tube flow reactor. Tetrahedron Letters, 2015, 56, 1687-1690.	0.7	9
108	Comparative Study of the Reactivity of Zirconium(IV)â€Substituted Polyoxometalates towards the Hydrolysis of Oligopeptides. European Journal of Inorganic Chemistry, 2015, 2015, 2206-2215.	1.0	24

#	Article	IF	CITATIONS
109	A versatile and highly efficient post-functionalization method for grafting organic molecules onto Anderson-type polyoxometalates. Dalton Transactions, 2015, 44, 19059-19062.	1.6	29
110	Hydrolysis of the RNA model substrate catalyzed by a binuclear Zr ^{IV} -substituted Keggin polyoxometalate. Dalton Transactions, 2015, 44, 15690-15696.	1.6	22
111	Eu(III) luminescence and tryptophan fluorescence spectroscopy as a tool for understanding interactions between hen egg white lysozyme and metal-substituted Keggin type polyoxometalates. Journal of Inorganic Biochemistry, 2015, 150, 72-80.	1.5	25
112	Selective protein purification by PEG–IDA-functionalized iron oxide nanoparticles. RSC Advances, 2015, 5, 66549-66553.	1.7	9
113	Magnetofluorescent micellar complexes of terbium(<scp>iii</scp>) as potential bimodal contrast agents for magnetic resonance and optical imaging. Chemical Communications, 2015, 51, 2984-2986.	2.2	20
114	Reactivity of Dimeric Tetrazirconium(IV) Wells–Dawson Polyoxometalate toward Dipeptide Hydrolysis Studied by a Combined Experimental and Density Functional Theory Approach. Inorganic Chemistry, 2015, 54, 11477-11492.	1.9	32
115	Synthesis and Characterization of Holmium-Doped Iron Oxide Nanoparticles. Materials, 2014, 7, 1155-1164.	1.3	32
116	Molecular Origin of the Hydrolytic Activity and Fixed Regioselectivity of a Zr ^{IV} â€6ubstituted Polyoxotungstate as Artificial Protease. Chemistry - A European Journal, 2014, 20, 9567-9577.	1.7	53
117	Solution Speciation of the Dinuclear Zr ^{IV} â€Substituted Keggin Polyoxometalate [{αâ€PW ₁₁ O ₃₉ Zr(μâ€OH)(H ₂ O)} ₂] ^{8–} and Reactivity towards DNAâ€Model Phosphodiester Hydrolysis. European Journal of Inorganic Chemistry, 2014, 2014, 5276-5284.	lts 1.0	25
118	Fabrication of polymer inverse opals with linear and nonlinear optical functionalities using a sandwiching approach. , 2014, , .		1
119	Hydrolysis of Tetraglycine by a Zr(IV)-Substituted Wells–Dawson Polyoxotungstate Studied by Diffusion Ordered NMR Spectroscopy. Journal of Cluster Science, 2014, 25, 855-866.	1.7	12
120	Regioselective Hydrolysis of Human Serum Albumin by Zr ^{IV} â€6ubstituted Polyoxotungstates at the Interface of Positively Charged Protein Surface Patches and Negatively Charged Amino Acid Residues. Chemistry - A European Journal, 2014, 20, 3894-3897.	1.7	92
121	Integrating ³¹ P DOSY NMR Spectroscopy and Molecular Mechanics as a Powerful Tool for Unraveling the Chemical Structures of Polyoxomolybdateâ€Based Amphiphilic Nanohybrids in Aqueous Solution. Chemistry - A European Journal, 2014, 20, 5258-5270.	1.7	13
122	Controlled Synthesis of a Novel Heteropolymetallic Complex with Selectively Incorporated Lanthanide(III) Ions. Inorganic Chemistry, 2014, 53, 1257-1259.	1.9	22
123	Molecular Origin of the Hydrolytic Activity and Fixed Regioselectivity of a ZrIV-Substituted Polyoxotungstate as Artificial Protease. Chemistry - A European Journal, 2014, 20, 9457-9457.	1.7	0
124	Micellar self-assemblies of gadolinium(iii)/europium(iii) amphiphilic complexes as model contrast agents for bimodal imaging. Dalton Transactions, 2014, 43, 3589.	1.6	30
125	Thermodynamic study of the interaction between hen egg white lysozyme and Ce(<scp>iv</scp>)-Keggin polyoxotungstate as artificial protease. Physical Chemistry Chemical Physics, 2014, 16, 21778-21787.	1.3	33
126	A computational study of the glycylserine hydrolysis at physiological pH: a zwitterionic versus anionic mechanism. Organic and Biomolecular Chemistry, 2014, 12, 1395.	1.5	3

#	Article	IF	CITATIONS
127	Towards polymetallic lanthanide complexes as dual contrast agents for magnetic resonance and optical imaging. Chemical Society Reviews, 2014, 43, 8178-8192.	18.7	141
128	Sandwich Approach toward Inverse Opals with Linear and Nonlinear Optical Functionalities. ACS Applied Materials & Interfaces, 2014, 6, 3870-3878.	4.0	7
129	Enantioselective Assembly of a Ruthenium(II) Polypyridyl Complex into a Double Helix. Angewandte Chemie - International Edition, 2014, 53, 8959-8962.	7.2	14
130	Selective hydrolysis of hen egg white lysozyme at Asp-X peptide bonds promoted by oxomolybdate. Journal of Inorganic Biochemistry, 2014, 136, 73-80.	1.5	16
131	A Mechanistic Study of the Spontaneous Hydrolysis of Glycylserine as the Simplest Model for Protein Selfâ€Cleavage. Chemistry - A European Journal, 2014, 20, 456-466.	1.7	17
132	Amino acid side chain induced selectivity in the hydrolysis of peptides catalyzed by a Zr(iv)-substituted Wells–Dawson type polyoxometalate. Dalton Transactions, 2013, 42, 15437.	1.6	47
133	Molecular interactions between serum albumin proteins and Keggin type polyoxometalates studied using luminescence spectroscopy. Physical Chemistry Chemical Physics, 2013, 15, 18378.	1.3	75
134	Amide bond hydrolysis in peptides and cyclic peptides catalyzed by a dimeric Zr(iv)-substituted Keggin type polyoxometalate. Dalton Transactions, 2013, 42, 10929.	1.6	70
135	Polyoxometalates as a Novel Class of Artificial Proteases: Selective Hydrolysis of Lysozyme under Physiological pH and Temperature Promoted by a Cerium(IV) Kegginâ€Type Polyoxometalate. Chemistry - A European Journal, 2013, 19, 2848-2858.	1.7	134
136	Lanthanide(III) Complexes of Diethylenetriaminepentaacetic Acid (DTPA)–Bisamide Derivatives as Potential Agents for Bimodal (Optical/Magnetic Resonance) Imaging. European Journal of Inorganic Chemistry, 2013, 2013, 2629-2639.	1.0	28
137	Hydrolysis of Dipeptides Catalyzed by a Zirconium(IV) ubstituted Lindqvist Type Polyoxometalate. European Journal of Inorganic Chemistry, 2013, 2013, 4601-4611.	1.0	41
138	Dysprosium Complexes and Their Micelles as Potential Bimodal Agents for Magnetic Resonance and Optical Imaging. Chemistry - A European Journal, 2013, 19, 16019-16028.	1.7	22
139	Entropyâ€Driven Chemisorption of NO _{<i>x</i>} on Phosphotungstic Acid. Angewandte Chemie - International Edition, 2012, 51, 11010-11013.	7.2	4
140	A Tripodal Ruthenium–Gadolinium Metallostar as a Potential αvβ3Integrin Specific Bimodal Imaging Contrast Agent. Inorganic Chemistry, 2012, 51, 6405-6411.	1.9	38
141	Peptide Bond Hydrolysis Catalyzed by the Wells–Dawson Zr(α ₂ -P ₂ W ₁₇ O ₆₁) ₂ Polyoxometalate. Inorganic Chemistry, 2012, 51, 9902-9910.	1.9	113
142	Unraveling the Mechanisms of Carboxyl Ester Bond Hydrolysis Catalyzed by a Vanadate Anion. Inorganic Chemistry, 2012, 51, 9619-9628.	1.9	7
143	Hydrolysis of DNA model substrates catalyzed by metal-substituted Wells–Dawson polyoxometalates. Dalton Transactions, 2012, 41, 10028.	1.6	56
144	A new metallostar complex based on an aluminum(iii) 8-hydroxyquinoline core as a potential bimodal contrast agent. Dalton Transactions, 2012, 41, 10549.	1.6	30

#	Article	IF	CITATIONS
145	Hydrolytic Activity of Vanadate toward Serine-Containing Peptides Studied by Kinetic Experiments and DFT Theory. Inorganic Chemistry, 2012, 51, 8848-8859.	1.9	33
146	Tetranuclear d-f Metallostars: Synthesis, Relaxometric, and Luminescent Properties. Inorganic Chemistry, 2012, 51, 8775-8783.	1.9	40
147	Chromateâ€Mediated Oneâ€Step Quantitative Transformation of PW ₁₂ into P ₂ W ₂₀ Polyoxometalates. European Journal of Inorganic Chemistry, 2012, 2012, 3852-3858.	1.0	5
148	A Selfâ€Assembled Complex with a Titanium(IV) Catecholate Core as a Potential Bimodal Contrast Agent. Chemistry - A European Journal, 2012, 18, 293-302.	1.7	39
149	Trinuclear rare earth metal complexes based on 1,3,5-triamino-1,3,5-trideoxy-cis inositol as catalysts for the hydrolysis of phosphodiesters. Dalton Transactions, 2011, 40, 1230.	1.6	22
150	Hydrolysis of carboxyesters promoted by vanadium(<scp>v</scp>) oxyanions. Dalton Transactions, 2011, 40, 295-300.	1.6	26
151	Polyoxomolybdate Promoted Hydrolysis of a DNA-Model Phosphoester Studied by NMR and EXAFS Spectroscopy. Inorganic Chemistry, 2011, 50, 11552-11560.	1.9	45
152	A Heterobimetallic Ruthenium–Gadolinium Complex as a Potential Agent for Bimodal Imaging. Inorganic Chemistry, 2011, 50, 10005-10014.	1.9	48
153	Hydrolysis of Serine-Containing Peptides at Neutral pH Promoted by [MoO ₄] ^{2–} Oxyanion. Inorganic Chemistry, 2011, 50, 12025-12033.	1.9	41
154	Nitrile-Functionalized Pyridinium, Pyrrolidinium, and Piperidinium Ionic Liquids. Journal of Physical Chemistry B, 2011, 115, 8424-8438.	1.2	58
155	A Modular Approach towards the Synthesis of Targetâ€6pecific MRI Contrast Agents. European Journal of Inorganic Chemistry, 2011, 2011, 3577-3585.	1.0	19
156	Degradation of 248 nm Deep UV Photoresist by Ion Implantation. Journal of the Electrochemical Society, 2011, 158, H785.	1.3	9
157	Removal of High-Dose Ion-Implanted 248â€,nm Deep UV Photoresist Using UV Irradiation and Organic Solvent. Journal of the Electrochemical Society, 2011, 158, H150.	1.3	9
158	Cobalt(II) Complexes of Nitrileâ€Functionalized Ionic Liquids. Chemistry - A European Journal, 2010, 16, 1849-1858.	1.7	59
159	Direct Observation of Molecularâ€Level Template Action Leading to Selfâ€Assembly of a Porous Framework. Chemistry - A European Journal, 2010, 16, 3926-3932.	1.7	106
160	Synthesis and characterization of dinuclear heterometallic lanthanide complexes exhibiting MRI and luminescence response. Dalton Transactions, 2010, 39, 5721.	1.6	36
161	Temperature swing adsorption of NOx over Keggin type heteropolyacids. Energy and Environmental Science, 2010, 3, 910.	15.6	17
162	Hydrolytic cleavage of DNA-model substrates promoted by polyoxovanadates. Dalton Transactions, 2010, 39, 585-592.	1.6	64

#	Article	IF	CITATIONS
163	Characterization of 248nm Deep Ultraviolet (DUV) Photoresist after Ion Implantation. ECS Transactions, 2009, 25, 187-194.	0.3	8
164	Speciation of Rareâ€Earth Metal Complexes in Ionic Liquids: A Multipleâ€Technique Approach. Chemistry - A European Journal, 2009, 15, 1449-1461.	1.7	91
165	(Tetracycline)europium(III) Complex as Luminescent Probe for Hydrogen Peroxide Detection. Helvetica Chimica Acta, 2009, 92, 2387-2397.	1.0	11
166	Ceric ammonium nitrate (CAN) as oxidizing or nitrating reagent for organic reactions in ionic liquids. Tetrahedron Letters, 2009, 50, 4582-4586.	0.7	27
167	Temperature-Driven Mixing-Demixing Behavior of Binary Mixtures of the Ionic Liquid Choline Bis(trifluoromethylsulfonyl)imide and Water. Journal of Physical Chemistry B, 2009, 113, 1429-1437.	1.2	102
168	When structural and electronic analogy leads to reactivity: the unprecedented phosphodiesterase activity of vanadates. Chemical Communications, 2009, , 965-967.	2.2	37
169	Structural characterization and reactivity of γ-octamolybdate functionalized by proline. Journal of Inorganic Biochemistry, 2008, 102, 1589-1598.	1.5	51
170	Phosphoesterase activity of polyoxomolybdates: diffusion ordered NMR spectroscopy as a tool for obtaining insights into the reactivity of polyoxometalate clusters. Chemical Communications, 2008, , 2774.	2.2	53
171	Hydrolytic Cleavage of an RNA-Model Phosphodiester Catalyzed by a Highly Negatively Charged Polyoxomolybdate [Mo ₇ O ₂₄] ^{6â^'} Cluster. Journal of the American Chemical Society, 2008, 130, 17400-17408.	6.6	87
172	Copper(II) 15-metallacrown-5 lanthanide(III) complexes derived from l-serine and l-threonine hydroxamic acids. Journal of Alloys and Compounds, 2008, 451, 38-41.	2.8	10
173	Lanthanide–surfactant-combined catalysts for the allylation of benzaldehyde with tetraallyltin in aqueous solutions. Journal of Alloys and Compounds, 2008, 451, 418-421.	2.8	14
174	Carboxyl-Functionalized Task-Specific Ionic Liquids for Solubilizing Metal Oxides. Inorganic Chemistry, 2008, 47, 9987-9999.	1.9	232
175	Questioning the paradigm of metal complex promoted phosphodiester hydrolysis: [Mo ₇ O ₂₄] ^{6â^²} polyoxometalate cluster as an unlikely catalyst for the hydrolysis of a DNA model substrate. Chemical Communications, 2008, , 85-87.	2.2	58
176	Bis(phenylethylamide) Derivatives of Gd-DTPA as Potential Receptor-Specific MRI Contrast Agents. European Journal of Inorganic Chemistry, 2007, 2007, 2061-2067.	1.0	23
177	Lanthanide(III) nitrobenzenesulfonates and p-toluenesulfonate complexes of lanthanide(III), iron(III), and copper(II) as novel catalysts for the formation of calix[4]resorcinarene. Tetrahedron, 2007, 63, 9063-9070.	1.0	12
178	Near-infrared photoluminescence of lanthanide complexes containing the hemicyanine chromophore. Polyhedron, 2007, 26, 5441-5447.	1.0	14
179	Poly[μ2-L-alanine-μ3-nitrato-sodium(I)]. Acta Crystallographica Section E: Structure Reports Online, 2007, 63, m2354-m2354.	0.2	4
180	Paramagnetic liposomes containing amphiphilic bisamide derivatives of Gd-DTPA with aromatic side chain groups as possible contrast agents for magnetic resonance imaging. European Biophysics Journal, 2006, 35, 136-144.	1.2	30

#	Article	IF	CITATIONS
181	Relaxometric Study of Copper [15]Metallacrown-5 Gadolinium Complexes Derived from α-Aminohydroxamic Acids. Chemistry - A European Journal, 2006, 12, 204-210.	1.7	38
182	Dinuclear Lanthanide Schiff-Base Complexes Forming a Rectangular Columnar Mesophase. European Journal of Inorganic Chemistry, 2006, 2006, 150-157.	1.0	40
183	Mandelohydroxamic Acid as Ligand for Copper(II) 15-Metallacrown-5 Lanthanide(III) and Copper(II) 15-Metallacrown-5 Uranyl Complexes. European Journal of Inorganic Chemistry, 2006, 2006, 1466-1474.	1.0	22
184	Pharmacokinetic andin vivo evaluation of a self-assembled gadolinium(III)-iron(II) contrast agent with high relaxivity. Contrast Media and Molecular Imaging, 2006, 1, 267-278.	0.4	39
185	Spectroscopic properties of neodymium(III)-containing polyoxometalates in aqueous solution. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2005, 62, 478-482.	2.0	13
186	Lanthanide(III)-Induced Conversion of 12-Metallacrown-4 to 5-Metallacrown-5 Complexes in Solution. European Journal of Inorganic Chemistry, 2005, 2005, 3303-3310.	1.0	29
187	Lanthanide(III) Tosylates as New Acylation Catalysts. European Journal of Organic Chemistry, 2005, 2005, 1810-1815.	1.2	22
188	Synthesis, Characterization, and Pharmacokinetic Evaluation of a Potential MRI Contrast Agent Containing Two Paramagnetic Centers with Albumin Binding Affinity. Chemistry - A European Journal, 2005, 11, 3077-3086.	1.7	47
189	Pentacopper(II) complexes of α-aminohydroxamic acids: uranyl-induced conversion of a 12-metallacrown-4 to a 15-metallacrown-5. Journal of Inorganic Biochemistry, 2005, 99, 497-504.	1.5	21
190	Design of High Coordination Number Metallomesogens by Decoupling of the Complex-Forming and Mesogenic Groups:  Nematic and Lamello-Columnar Mesophases. Chemistry of Materials, 2005, 17, 6589-6598.	3.2	113
191	Gadolinium DTPA-Monoamide Complexes Incorporated into Mixed Micelles as Possible MRI Contrast Agents. European Journal of Inorganic Chemistry, 2004, 2004, 3538-3543.	1.0	59
192	Lanthanide(III) Nitrobenzenesulfonates as New Nitration Catalysts: The Role of the Metal and of the Counterion in the Catalytic Efficiency. European Journal of Organic Chemistry, 2004, 2004, 4560-4566.	1.2	16
193	Lanthanide(III) nosylates as new nitration catalysts. Tetrahedron Letters, 2004, 45, 3137-3139.	0.7	52
194	Lanthanide(III) complexes of aromatic sulfonic acids as catalysts for the nitration of toluene. Journal of Alloys and Compounds, 2004, 374, 46-49.	2.8	21
195	Heterobimetallic gadolinium(III)–iron(III) complex of DTPA-bis(3-hydroxytyramide). Journal of Alloys and Compounds, 2004, 374, 325-329.	2.8	15
196	Rare-Earth Quinolinates:Â Infrared-Emitting Molecular Materials with a Rich Structural Chemistry. Inorganic Chemistry, 2004, 43, 8461-8469.	1.9	124
197	Potential MRI Contrast Agents Based on Micellar Incorporation of Amphiphilic Bis(alkylamide) Derivatives of [(Gdâ^'DTPA)(H2O)]2â^'. European Journal of Inorganic Chemistry, 2003, 2003, 3021-3027.	1.0	67
198	Adducts of Schiff Bases with Tris(β-diketonato)lanthanide(III) Complexes: Structure and Liquid-Crystalline Behaviour. European Journal of Inorganic Chemistry, 2003, 2003, 3028-3033.	1.0	23

#	Article	IF	CITATIONS
199	Liquid-crystalline azines formed by the rare-earth promoted decomposition of hydrazide "habbe― ligands: structural and thermal properties. Journal of Materials Chemistry, 2003, 13, 1639-1645.	6.7	32
200	Mesomorphism of lanthanide-containing Schiff's base complexes with chloride counterions. Liquid Crystals, 2002, 29, 1209-1216.	0.9	17
201	Nature of equilibrium shifts in racemic praseodymium(iii) tris(2,2′-oxydiacetate) induced by interaction with chiral probes. Dalton Transactions RSC, 2002, , 1602-1606.	2.3	18
202	NMR Solution Structure and Dynamics of the Peptidyl-prolyl cis–trans Isomerase Domain of the Trigger Factor from Mycoplasma genitalium Compared to FK506-binding Protein. Journal of Molecular Biology, 2002, 318, 1097-1115.	2.0	35
203	Design, Formation and Properties of Tetrahedral M4L4and M4L6Supramolecular Clusters1. Journal of the American Chemical Society, 2001, 123, 8923-8938.	6.6	263
204	Absolute Configuration Assignment of D3-Symmetric Lanthanide Complexes Based on Circular Dichroism Induced by Interaction with a Chiral Probe. ChemPhysChem, 2001, 2, 767.	1.0	12
205	Assignment of the 1H, 13C and 15N resonances of the PPIase domain of the trigger factor from Mycoplasma genitalium. Journal of Biomolecular NMR, 2001, 20, 193-194.	1.6	4
206	Assignment of 1H, 13C and 15N resonances to the sensory domain of the membraneous two-component fumarate sensor (histidine protein kinase) DcuS of Escherichia coli. Journal of Biomolecular NMR, 2001, 19, 91-92.	1.6	5
207	Host within a Host: Encapsulation of Alkali Ion – Crown Ether Complexes into a [Ga4L6]12 Supramolecular Cluster. Angewandte Chemie - International Edition, 2000, 39, 1239-1242.	7.2	75
208	meso Myths: What Drives Assembly of Helical versusmeso-[M2L3] Clusters?. Angewandte Chemie - International Edition, 1999, 38, 2878-2882.	7.2	111
209	Dynamic Isomerization of a Supramolecular Tetrahedral M4L6Cluster1. Journal of the American Chemical Society, 1999, 121, 4200-4206.	6.6	102
210	New Regioselectivity in the Cleavage of Histidine-Containing Peptides by Palladium(II) Complexes Studied by Kinetic Experiments and Molecular Dynamics Simulations. Journal of the American Chemical Society, 1999, 121, 3127-3135.	6.6	77
211	The Self-Assembly of a Predesigned Tetrahedral M4L6 Supramolecular Cluster. Angewandte Chemie - International Edition, 1998, 37, 1840-1843.	7.2	436
212	Selective Encapsulation of Aqueous Cationic Guests into a Supramolecular Tetrahedral [M4L6]12-Anionic Host1. Journal of the American Chemical Society, 1998, 120, 8003-8004.	6.6	190
213	Regioselective Cleavage by a Palladium(II) Aqua Complex of a Polypeptide in Different Overall Conformations. Inorganic Chemistry, 1998, 37, 2141-2144.	1.9	43
214	Dependence of hydrolytic cleavage of histidine-containing peptides by palladium(II) aqua complexes on the co-ordination modes of the peptides. Journal of the Chemical Society Dalton Transactions, 1997, , 2771-2776.	1.1	66
215	Effects of Linkage Isomerism and of Acidâ ^{°3} Base Equilibria on Reactivity and Catalytic Turnover in Hydrolytic Cleavage of Histidyl Peptides Coordinated to Palladium(II). Identification of the Active Complex between Palladium(II) and the Histidyl Residue. Journal of the American Chemical Society, 1996, 118, 5946-5951.	6.6	96
216	New Selectivity and Turnover in Peptide Hydrolysis by Metal Complexes. A Palladium(II) Aqua Complex Catalyzes Cleavage of Peptides Next to the Histidine Residue. Journal of the American Chemical Society, 1996, 118, 51-58.	6.6	127

#	Article	IF	CITATIONS
217	Site-Specific Hydrolytic Cleavage of Cytochrome c and of Its Heme Undecapeptide, Promoted by Coordination Complexes of Palladium(II). Journal of the American Chemical Society, 1994, 116, 5218-5224.	6.6	109
218	Interproton coupling across the trans-peptide bond (5Jαα′) in chelated dipeptides. Journal of the Chemical Society Perkin Transactions II, 1993, , 1805-1810.	0.9	4
219	Non-Oxidizing Solvent-Based Strip of Ion Implanted Photoresist. Solid State Phenomena, 0, 187, 97-100.	0.3	0