
Deepak A Deshpande

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5357105/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Bitter taste receptors on airway smooth muscle bronchodilate by localized calcium signaling and reverse obstruction. Nature Medicine, 2010, 16, 1299-1304.	15.2	549
2	Allosteric ligands for the pharmacologically dark receptors GPR68 and GPR65. Nature, 2015, 527, 477-483.	13.7	214
3	CD38â€cyclic ADPâ€riboseâ€mediated Ca2+signaling contributes to airway smooth muscle hyperresponsiveness. FASEB Journal, 2003, 17, 1-25.	0.2	159
4	CD38/cyclic ADP-ribose signaling: role in the regulation of calcium homeostasis in airway smooth muscle. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2005, 288, L773-L788.	1.3	121
5	Autophagy Activation in Asthma Airways Remodeling. American Journal of Respiratory Cell and Molecular Biology, 2019, 60, 541-553.	1.4	108
6	Targeting G protein-coupled receptor signaling in asthma. Cellular Signalling, 2006, 18, 2105-2120.	1.7	105
7	Bitter Taste Receptor Agonists Mitigate Features of Allergic Asthma in Mice. Scientific Reports, 2017, 7, 46166.	1.6	76
8	βâ€Arrestins specifically constrain β2â€adrenergic receptor signaling and function in airway smooth muscle. FASEB Journal, 2008, 22, 2134-2141.	0.2	75
9	β-Agonist-mediated Relaxation of Airway Smooth Muscle Is Protein Kinase A-dependent. Journal of Biological Chemistry, 2014, 289, 23065-23074.	1.6	66
10	Antiâ€mitogenic effects of βâ€agonists and PGE ₂ on airway smooth muscle are PKA dependent. FASEB Journal, 2011, 25, 389-397.	0.2	58
11	Regulation of Cysteinyl Leukotriene Type 1 Receptor Internalization and Signaling. Journal of Biological Chemistry, 2005, 280, 8722-8732.	1.6	53
12	Agonist-Promoted Homologous Desensitization of Human Airway Smooth Muscle Bitter Taste Receptors. American Journal of Respiratory Cell and Molecular Biology, 2011, 45, 1069-1074.	1.4	49
13	Mapping Functional Group Free Energy Patterns at Protein Occluded Sites: Nuclear Receptors and G-Protein Coupled Receptors. Journal of Chemical Information and Modeling, 2015, 55, 700-708.	2.5	48
14	Bitter taste receptor agonists alter mitochondrial function and induce autophagy in airway smooth muscle cells. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2017, 313, L154-L165.	1.3	48
15	Antimitogenic effect of bitter taste receptor agonists on airway smooth muscle cells. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2016, 310, L365-L376.	1.3	47
16	Endogenous G _s -Coupled Receptors in Smooth Muscle Exhibit Differential Susceptibility to GRK2/3-Mediated Desensitization. Biochemistry, 2008, 47, 9279-9288.	1.2	42
17	IL-6 trans-signaling increases expression of airways disease genes in airway smooth muscle. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2015, 309, L129-L138.	1.3	42
18	Bronchodilator activity of bitter tastants in human tissue. Nature Medicine, 2011, 17, 776-778.	15.2	40

DEEPAK A DESHPANDE

#	Article	IF	CITATIONS
19	Pleiotropic Effects of Bitter Taste Receptors on [Ca2+]i Mobilization, Hyperpolarization, and Relaxation of Human Airway Smooth Muscle Cells. PLoS ONE, 2015, 10, e0131582.	1.1	40
20	Glucocorticoid- and Protein Kinase A–Dependent Transcriptome Regulation in Airway Smooth Muscle. American Journal of Respiratory Cell and Molecular Biology, 2009, 41, 24-39.	1.4	39
21	Aâ€kinase anchoring proteins regulate compartmentalized cAMP signaling in airway smooth muscle. FASEB Journal, 2012, 26, 3670-3679.	0.2	36
22	Biased signaling of the protonâ€sensing receptor OGR1 by benzodiazepines. FASEB Journal, 2018, 32, 862-874.	0.2	36
23	MicroRNAâ€638 inhibits human airway smooth muscle cell proliferation and migration through targeting cyclin D1 and NOR1. Journal of Cellular Physiology, 2019, 234, 369-381.	2.0	36
24	Bitter Taste Receptors for Asthma Therapeutics. Frontiers in Physiology, 2019, 10, 884.	1.3	36
25	CD38 in the pathogenesis of allergic airway disease: Potential therapeutic targets. , 2017, 172, 116-126.		32
26	Mitogenic Effects of Cytokines on Smooth Muscle Are Critically Dependent on Protein Kinase A and Are Unmasked by Steroids and Cyclooxygenase Inhibitors. Molecular Pharmacology, 2008, 73, 566-574.	1.0	31
27	Mitochondrial regulation of airway smooth muscle functions in health and pulmonary diseases. Archives of Biochemistry and Biophysics, 2019, 663, 109-119.	1.4	28
28	PKCâ€dependent regulation of the receptor locus dominates functional consequences of cysteinyl leukotriene type 1 receptor activation. FASEB Journal, 2007, 21, 2335-2342.	0.2	25
29	Effects of ATPâ€competitive and functionâ€selective ERK inhibitors on airway smooth muscle cell proliferation. FASEB Journal, 2019, 33, 10833-10843.	0.2	25
30	New targets for resolution of airway remodeling in obstructive lung diseases. F1000Research, 2018, 7, 680.	0.8	24
31	Specificity of arrestin subtypes in regulating airway smooth muscle G proteinâ€coupled receptor signaling and function. FASEB Journal, 2015, 29, 4227-4235.	0.2	23
32	Exploiting functional domains of GRK2/3 to alter the competitive balance of pro―and anticontractile signaling in airway smooth muscle. FASEB Journal, 2014, 28, 956-965.	0.2	21
33	Diacylglycerol kinase ζ promotes allergic airway inflammation and airway hyperresponsiveness through distinct mechanisms. Science Signaling, 2019, 12, .	1.6	20
34	Cooperativity of Eâ€prostanoid receptor subtypes in regulating signaling and growth inhibition in human airway smooth muscle. FASEB Journal, 2019, 33, 4780-4789.	0.2	20
35	Bnip3 regulates airway smooth muscle cell focal adhesion and proliferation. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2019, 317, L758-L767.	1.3	19
36	Apoptosis signal-regulating kinase 1 inhibition attenuates human airway smooth muscle growth and migration in chronic obstructive pulmonary disease. Clinical Science, 2018, 132, 1615-1627.	1.8	18

DEEPAK A DESHPANDE

#	Article	IF	CITATIONS
37	Chloroquine: Autophagy inhibitor, antimalarial, bitter taste receptor agonist in fight against COVID-19, a reality check?. European Journal of Pharmacology, 2021, 897, 173928.	1.7	17
38	Regulation of ovarian cancer G protein-coupled receptor-1 expression and signaling. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2019, 316, L894-L902.	1.3	16
39	Role of CD38/cADPR signaling in obstructive pulmonary diseases. Current Opinion in Pharmacology, 2020, 51, 29-33.	1.7	14
40	Autophagy and airway fibrosis: Is there a link?. F1000Research, 2017, 6, 409.	0.8	13
41	Nur77 Attenuates Inflammasome Activation by Inhibiting Caspase-1 Expression in Pulmonary Vascular Endothelial Cells. American Journal of Respiratory Cell and Molecular Biology, 2021, 65, 288-299.	1.4	12
42	The odorant receptor OR2W3 on airway smooth muscle evokes bronchodilation via a cooperative chemosensory tradeoff between TMEM16A and CFTR. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 28485-28495.	3.3	11
43	OGR1-dependent regulation of the allergen-induced asthma phenotype. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2021, 321, L1044-L1054.	1.3	11
44	Dysregulated retinoic acid signaling in airway smooth muscle cells in asthma. FASEB Journal, 2021, 35, e22016.	0.2	10
45	Specificity of NHERF1 regulation of CPCR signaling and function in human airway smooth muscle. FASEB Journal, 2019, 33, 9008-9016.	0.2	8
46	Therapeutic potential and challenges of bitter taste receptors on lung cells. Current Opinion in Pharmacology, 2020, 51, 43-49.	1.7	8
47	Diacylglycerol Kinase Inhibition Reduces Airway Contraction by Negative Feedback Regulation of Gq-Signaling. American Journal of Respiratory Cell and Molecular Biology, 2021, 65, 658-671.	1.4	8
48	Bitter Taste Receptors: an Answer to Comprehensive Asthma Control?. Current Allergy and Asthma Reports, 2019, 19, 48.	2.4	6
49	The role of diacylglycerol kinases in allergic airway disease. Current Opinion in Pharmacology, 2020, 51, 50-58.	1.7	6
50	Increased expression of desmin and vimentin reduces bladder smooth muscle contractility via JNK2. FASEB Journal, 2020, 34, 2126-2146.	0.2	5
51	NF-κB and GATA-Binding Factor 6 Repress Transcription of Caveolins in Bladder Smooth Muscle Hypertrophy. American Journal of Pathology, 2019, 189, 847-867.	1.9	5
52	Bitter Taste Receptors in the Airway Cells Functions. Handbook of Experimental Pharmacology, 2021, , 203-227.	0.9	4
53	Autocrine regulation of airway smooth muscle contraction by diacylglycerol kinase. Journal of Cellular Physiology, 2021, , .	2.0	4
54	A tripartite cooperative mechanism confers resistance of the protein kinase A catalytic subunit to dephosphorylation. Journal of Biological Chemistry, 2020, 295, 3316-3329.	1.6	2

#	Article	IF	CITATIONS
55	Reply to Letter to the Editor: "Bnip3 as a potential target to treat airway smooth muscle remodeling in asthma?― American Journal of Physiology - Lung Cellular and Molecular Physiology, 2020, 318, L213-L214.	1.3	1
56	Editorial overview: Pulmonary 2020 – advances in the pharmacology of obstructive lung diseases. Current Opinion in Pharmacology, 2020, 51, iii-vii.	1.7	0
57	Comparisons of ATPâ€competitive (Type I) versus functionâ€selective (Type IV) ERK Inhibitors to Prevent Airway Smooth Muscle Cell Proliferation. FASEB Journal, 2019, 33, 793.2.	0.2	Ο
58	In Silico Identification of a β2 Adrenergic Receptor Allosteric Site that Selectively Augments Canonical β ₂ ARâ€Gs Signaling and Function. FASEB Journal, 2022, 36, .	0.2	0
59	Elucidating the Bitter Taste Signaling Paradox in Airway Smooth Muscle Relaxation. FASEB Journal, 2022, 36, .	0.2	0