Ignacio Pagonabarraga

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5357088/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Colloidal Jamming at Interfaces: A Route to Fluid-Bicontinuous Gels. Science, 2005, 309, 2198-2201.	6.0	449
2	Dissipative particle dynamics for interacting systems. Journal of Chemical Physics, 2001, 115, 5015-5026.	1.2	296
3	Inertial effects in three-dimensional spinodal decomposition of a symmetric binary fluid mixture: a lattice Boltzmann study. Journal of Fluid Mechanics, 2001, 440, 147-203.	1.4	263
4	Arrested phase separation in reproducing bacteria creates a generic route to pattern formation. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 11715-11720.	3.3	241
5	Clogging transition of many-particle systems flowing through bottlenecks. Scientific Reports, 2014, 4, 7324.	1.6	237
6	Controlled Swimming in Confined Fluids of Magnetically Actuated Colloidal Rotors. Physical Review Letters, 2008, 101, 218304.	2.9	233
7	Full Phase Diagram of Active Brownian Disks: From Melting to Motility-Induced Phase Separation. Physical Review Letters, 2018, 121, 098003.	2.9	227
8	Self-consistent dissipative particle dynamics algorithm. Europhysics Letters, 1998, 42, 377-382.	0.7	167
9	Randomly driven granular fluids: Large-scale structure. Physical Review E, 1999, 59, 4326-4341.	0.8	138
10	Magnetically Actuated Colloidal Microswimmers. Journal of Physical Chemistry B, 2008, 112, 16525-16528.	1.2	126
11	LUDWIG: A parallel Lattice-Boltzmann code for complex fluids. Computer Physics Communications, 2001, 134, 273-290.	3.0	112
12	Clustering and Pattern Formation in Chemorepulsive Active Colloids. Physical Review Letters, 2015, 115, 258301.	2.9	111
13	Colloidal Microworms Propelling via a Cooperative Hydrodynamic Conveyor Belt. Physical Review Letters, 2015, 115, 138301.	2.9	101
14	Boundary Models in DPD. International Journal of Modern Physics C, 1998, 09, 1319-1328.	0.8	100
15	Discrete solution of the electrokinetic equations. Journal of Chemical Physics, 2004, 121, 973-986.	1.2	91
16	Randomly driven granular fluids: Collisional statistics and short scale structure. Physical Review E, 2001, 65, 011303.	0.8	89
17	Hydrodynamic interactions in squirmer motion: Swimming with a neighbour and close to a wall. Journal of Non-Newtonian Fluid Mechanics, 2010, 165, 946-952.	1.0	88
18	Spontaneous aggregation and global polar ordering in squirmer suspensions. Journal of Molecular Liquids, 2013, 185, 56-61.	2.3	88

#	Article	IF	CITATIONS
19	Algebraic Decay of Velocity Fluctuations in a Confined Fluid. Physical Review Letters, 1997, 78, 3785-3788.	2.9	80
20	Lees–Edwards Boundary Conditions for Lattice Boltzmann. Journal of Statistical Physics, 2002, 107, 521-537.	0.5	80
21	Recent advances in the modelling and simulation of electrokinetic effects: bridging the gap between atomistic and macroscopic descriptions. Physical Chemistry Chemical Physics, 2010, 12, 9566.	1.3	75
22	Collective motion of active Brownian particles with polar alignment. Soft Matter, 2018, 14, 2610-2618.	1.2	75
23	Dynamic regimes of hydrodynamically coupled self-propelling particles. Europhysics Letters, 2006, 75, 999-1005.	0.7	73
24	Emergent structures and dynamics of cell colonies by contact inhibition of locomotion. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 14621-14626.	3.3	73
25	Controlled drop emission by wetting properties in driven liquid filaments. Nature Materials, 2011, 10, 367-371.	13.3	72
26	Role of Particle Shape on the Stress Propagation in Granular Packings. Physical Review Letters, 2009, 103, 118001.	2.9	71
27	Active Brownian equation of state: metastability and phase coexistence. Soft Matter, 2017, 13, 8113-8119.	1.2	70
28	Fluctuating hydrodynamics approach to chemical reactions. Physica A: Statistical Mechanics and Its Applications, 1997, 237, 205-219.	1.2	69
29	Activity induced synchronization: Mutual flocking and chiral self-sorting. Physical Review Research, 2019, 1, .	1.3	62
30	Emergent hydrodynamic bound states between magnetically powered micropropellers. Science Advances, 2018, 4, eaap9379.	4.7	54
31	Simulating colloid hydrodynamics with lattice Boltzmann methods. Journal of Physics Condensed Matter, 2004, 16, S3903-S3915.	0.7	53
32	Rheology of red blood cells under flow in highly confined microchannels: I. effect of elasticity. Soft Matter, 2014, 10, 7195.	1.2	53
33	Lattice Boltzmann for Binary Fluids with Suspended Colloids. Journal of Statistical Physics, 2005, 121, 163-178.	0.5	51
34	Hydrodynamic Induced Deformation and Orientation of a Microscopic Elastic Filament. Physical Review Letters, 2005, 94, 148104.	2.9	50
35	Electrokinetics: insights from simulation on the microscopic scale. Molecular Physics, 2013, 111, 827-842.	0.8	50
36	Coarse-grained simulations of charge, current and flow in heterogeneous media. Faraday Discussions, 2010, 144, 223-243.	1.6	49

#	Article	IF	CITATIONS
37	Confined Brownian ratchets. Journal of Chemical Physics, 2013, 138, 194906.	1.2	49
38	Entropic Electrokinetics: Recirculation, Particle Separation, and Negative Mobility. Physical Review Letters, 2014, 113, 128301.	2.9	49
39	Non-Ideal DPD Fluids. Molecular Simulation, 2000, 25, 167-175.	0.9	48
40	Controlled propulsion in viscous fluids of magnetically actuated colloidal doublets. Physical Review E, 2010, 81, 011402.	0.8	48
41	Morphology of clusters of attractive dry and wet self-propelled spherical particle suspensions. Soft Matter, 2017, 13, 814-826.	1.2	47
42	Velocity alignment promotes motility-induced phase separation. Europhysics Letters, 2018, 124, 30004.	0.7	47
43	Short-time dynamics of colloidal suspensions in confined geometries. Physical Review E, 1999, 59, 4458-4469.	0.8	46
44	A unified description of colloidal thermophoresis. European Physical Journal E, 2018, 41, 7.	0.7	46
45	A Lattice-Boltzmann model for suspensions of self-propelling colloidal particles. European Physical Journal E, 2006, 20, 151-158.	0.7	45
46	Local Size Segregation in Polydisperse Hard Sphere Fluids. Physical Review Letters, 2000, 84, 911-914.	2.9	44
47	Entropic transport in confined media: a challenge for computational studies in biological and soft-matter systems. Frontiers in Physics, 2013, 1, .	1.0	44
48	Guided accumulation of active particles by topological design of a second-order skin effect. Nature Communications, 2021, 12, 4691.	5.8	44
49	Magnetically tunable bidirectional locomotion of a self-assembled nanorod-sphere propeller. Nature Communications, 2018, 9, 1663.	5.8	42
50	Linear Response Theory and Green-Kubo Relations for Active Matter. Physical Review Letters, 2019, 123, 238003.	2.9	42
51	Parallel simulation of particle suspensions with the lattice Boltzmann method. Computers and Mathematics With Applications, 2008, 55, 1585-1593.	1.4	40
52	Avalanche dynamics of fiber bundle models. Physical Review E, 2009, 80, 051108.	0.8	40
53	Hydrodynamic flow caused by active transport along cytoskeletal elements. Europhysics Letters, 2007, 78, 18001.	0.7	39
54	Accounting for adsorption and desorption in lattice Boltzmann simulations. Physical Review E, 2013, 88, 013308.	0.8	39

#	Article	IF	CITATIONS
55	Physical and computational scaling issues in lattice Boltzmann simulations of binary fluid mixtures. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2005, 363, 1917-1935.	1.6	36
56	Influence of hydrodynamic interactions on the adsorption process of large particles. Physical Review Letters, 1994, 73, 114-117.	2.9	35
57	Derivation of the Langmuir adsorption equation from non-equilibrium thermodynamics. Physica A: Statistical Mechanics and Its Applications, 1992, 188, 553-567.	1.2	34
58	Algebraic decay of velocity fluctuations near a wall. Physical Review E, 1998, 58, 7288-7295.	0.8	34
59	Stress distribution of faceted particles in a silo after its partial discharge. European Physical Journal E, 2011, 34, 1-8.	0.7	34
60	The structure and rheology of sheared model swimmer suspensions. Soft Matter, 2013, 9, 7174.	1.2	34
61	Spatiotemporal control of cargo delivery performed by programmable self-propelled Janus droplets. Communications Physics, 2018, 1, .	2.0	34
62	Cooperative rectification in confined Brownian ratchets. Physical Review E, 2012, 85, 010105.	0.8	33
63	Sedimentation of pairs of hydrodynamically interacting semiflexible filaments. Physical Review E, 2007, 76, 061901.	0.8	32
64	Self-Propulsion of Active Colloids via Ion Release: Theory and Experiments. Physical Review Letters, 2020, 124, 108001.	2.9	32
65	Lattice-Boltzmann-Langevin simulations of binary mixtures. Physical Review E, 2011, 84, 046709.	0.8	31
66	Inertial coupling for point particle fluctuating hydrodynamics. Journal of Computational Physics, 2013, 235, 701-722.	1.9	31
67	Rheology of red blood cells under flow in highly confined microchannels. II. Effect of focusing and confinement. Soft Matter, 2014, 10, 7207.	1.2	29
68	Dispersion of charged tracers in charged porous media. Europhysics Letters, 2008, 83, 34004.	0.7	28
69	Entropically induced asymmetric passage times of charged tracers across corrugated channels. Journal of Chemical Physics, 2016, 144, 034901.	1.2	28
70	Polarized cortical tension drives zebrafish epiboly movements. EMBO Journal, 2017, 36, 25-41.	3.5	28
71	A practical density functional for polydisperse polymers. Europhysics Letters, 2001, 55, 348-354.	0.7	27
72	Hydrodynamic regimes of active rotators at fluid interfaces. European Physical Journal E, 2008, 26, 103-113.	0.7	27

#	Article	IF	CITATIONS
73	Universality class of fiber bundles with strong heterogeneities. Europhysics Letters, 2008, 81, 54005.	0.7	27
74	Synchronization in Dynamical Networks of Locally Coupled Self-Propelled Oscillators. Physical Review X, 2017, 7, .	2.8	27
75	A mesoscopic model for (de)wetting. European Physical Journal E, 2006, 20, 209-214.	0.7	26
76	Granular packings of elongated faceted particles deposited under gravity. Journal of Statistical Mechanics: Theory and Experiment, 2010, 2010, P06025.	0.9	26
77	Lattice-gas model for active vesicle transport by molecular motors with opposite polarities. Physical Review E, 2010, 82, 021925.	0.8	26
78	Colloid Electrophoresis for Strong and Weak Ion Diffusivity. Physical Review Letters, 2011, 106, 248304.	2.9	26
79	Dissipative particle dynamics simulations of tri-block co-polymer and water: Phase diagram validation and microstructure identification. Journal of Chemical Physics, 2018, 149, 184903.	1.2	26
80	From motility-induced phase-separation to glassiness in dense active matter. Communications Physics, 2022, 5, .	2.0	26
81	Running Faster Together: Huge Speed up of Thermal Ratchets due to Hydrodynamic Coupling. Physical Review Letters, 2012, 109, 168101.	2.9	25
82	Density-dependent dispersal and population aggregation patterns. Journal of Theoretical Biology, 2012, 309, 113-120.	0.8	25
83	Active apolar doping determines routes to colloidal clusters and gels. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 10618-10623.	3.3	25
84	Mesoscopic non-equilibrium thermodynamics of non-isothermal reaction-diffusion. Physical Chemistry Chemical Physics, 2010, 12, 12780.	1.3	24
85	Phase-field theories for mathematical modeling of biological membranes. Chemistry and Physics of Lipids, 2015, 185, 46-60.	1.5	24
86	Flow of colloidal suspensions through small orifices. Physical Review E, 2018, 97, 012611.	0.8	24
87	Influence of hydrodynamic interactions on the ballistic deposition of colloidal particles on solid surfaces. Journal of Chemical Physics, 1996, 105, 7815-7827.	1.2	23
88	Interfacial dynamics in 3D binary fluid demixing: animation studies*. New Journal of Physics, 2001, 3, 9-9.	1.2	23
89	Density dependent potentials: Structure and thermodynamics. Journal of Chemical Physics, 2007, 127, 054903.	1.2	23
90	The nonlinear fragmentation equation. Journal of Physics A: Mathematical and Theoretical, 2007, 40, F331-F337.	0.7	23

Ignacio Pagonabarraga

#	Article	IF	CITATIONS
91	Energy-conserving coarse-graining of complex molecules. Soft Matter, 2016, 12, 4821-4837.	1.2	22
92	Adsorption of Colloidal Particles in the Presence of External Fields. Physical Review Letters, 1995, 75, 461-464.	2.9	21
93	Lattice-Boltzmann simulation of the sedimentation of charged disks. Journal of Chemical Physics, 2006, 124, 124903.	1.2	21
94	Unified analysis of topological defects in 2D systems of active and passive disks. Soft Matter, 2022, 18, 566-591.	1.2	21
95	Critical ruptures in a bundle of slowly relaxing fibers. Physical Review E, 2008, 77, 036102.	0.8	20
96	AFM measurements and lipid rearrangements: evidence from red blood cell shape changes. Soft Matter, 2012, 8, 7716.	1.2	20
97	Theory of Wetting-Induced Fluid Entrainment by Advancing Contact Lines on Dry Surfaces. Physical Review Letters, 2013, 110, 264502.	2.9	20
98	Brittle-to-ductile transition in a fiber bundle with strong heterogeneity. Physical Review E, 2013, 87, 042816.	0.8	20
99	Cooling dynamics of a granular gas of elongated particles. Journal of Statistical Mechanics: Theory and Experiment, 2010, 2010, P06020.	0.9	19
100	Long-range correlations in diffusive systems away from equilibrium. Physical Review E, 1994, 49, 267-272.	0.8	18
101	Mesoscopic lattice modeling of electrokinetic phenomena. Computer Physics Communications, 2005, 169, 192-196.	3.0	18
102	Microfluidics Approach to the Mechanical Properties of Red Blood Cell Membrane and Their Effect on Blood Rheology. Membranes, 2022, 12, 217.	1.4	18
103	Effective electrodiffusion equation for non-uniform nanochannels. Journal of Chemical Physics, 2013, 138, 244107.	1.2	17
104	Cooperative motion of intrinsic and actuated semiflexible swimmers. Physical Review E, 2013, 87, .	0.8	17
105	Fluctuation–dissipation relations in the absence of detailed balance: formalism and applications to active matter. Journal of Statistical Mechanics: Theory and Experiment, 2021, 2021, 043201.	0.9	17
106	Arrested phase separation in chiral fluids of colloidal spinners. Physical Review Research, 2021, 3, .	1.3	17
107	Binary Fluid Demixing: The Crossover Region. Journal of Statistical Physics, 2002, 107, 39-52.	0.5	16
108	Three-dimensional aspects of fluid flows in channels. I. Meniscus and thin film regimes. Physics of Fluids, 2007, 19, 102112.	1.6	16

#	Article	IF	CITATIONS
109	Collective vesicle transport on biofilaments carried by competing molecular motors. Europhysics Letters, 2008, 84, 58009.	0.7	16
110	The Lost Work in Dissipative Self-Assembly. International Journal of Thermophysics, 2013, 34, 1229-1238.	1.0	16
111	Superconfinement tailors fluid flow at microscales. Nature Communications, 2015, 6, 7297.	5.8	16
112	Life at the mesoscale: the self-organised cytoplasm and nucleoplasm. BMC Biophysics, 2015, 8, 4.	4.4	16
113	Propulsion and hydrodynamic particle transport of magnetically twisted colloidal ribbons. New Journal of Physics, 2017, 19, 103031.	1.2	16
114	Static and Dynamic Selfâ€Assembly of Pearlâ€Likeâ€Chains of Magnetic Colloids Confined at Fluid Interfaces. Small, 2021, 17, e2101188.	5.2	16
115	Universality of fluctuation-dissipation ratios: The ferromagnetic model. Physical Review E, 2005, 72, 056114.	0.8	15
116	Hydrodynamic interaction between two trapped swimming model micro-organisms. European Physical Journal E, 2010, 33, 27-39.	0.7	15
117	Driving an electrolyte through a corrugated nanopore. Journal of Chemical Physics, 2019, 151, 084902.	1.2	15
118	Phase separation of self-propelled disks with ferromagnetic and nematic alignment. Physical Review E, 2021, 104, 054611.	0.8	15
119	Modeling of Block Copolymer/Colloid Hybrid Composite Materials. Macromolecular Theory and Simulations, 2011, 20, 769-779.	0.6	14
120	Chemical Cycle Kinetics: Removing the Limitation of Linearity of a Non-equilibrium Thermodynamic Description. International Journal of Thermophysics, 2013, 34, 1214-1228.	1.0	14
121	Influence of the feeding mechanism on deposits of square particles. Physical Review E, 2013, 87, 012202.	0.8	14
122	Tracer diffusion of hard-sphere binary mixtures under nano-confinement. Journal of Chemical Physics, 2015, 143, 184501.	1.2	14
123	Geometrically Tuned Channel Permeability. Macromolecular Symposia, 2015, 357, 178-188.	0.4	14
124	Guidance of active particles at liquid–liquid interfaces near surfaces. Soft Matter, 2019, 15, 6581-6588.	1.2	14
125	Dynamics of Polydisperse Polymer Mixtures. Macromolecules, 2003, 36, 934-949.	2.2	13
126	Polydisperse hard spheres at a hard wall. Journal of Chemical Physics, 2004, 121, 11362.	1.2	13

#	Article	IF	CITATIONS
127	Phase Behavior of Block Copolymer Nanocomposite Systems. Advanced Theory and Simulations, 2018, 1, 1800066.	1.3	13
128	Confinement-controlled rectification in a geometric nanofluidic diode. Journal of Chemical Physics, 2019, 151, 044707.	1.2	13
129	Test of the fluctuation theorem for stochastic entropy production in a nonequilibrium steady state. Physical Review E, 2006, 74, 061113.	0.8	12
130	Three-dimensional aspects of fluid flows in channels. II. Effects of meniscus and thin film regimes on viscous fingers. Physics of Fluids, 2007, 19, 102113.	1.6	12
131	Phase segregation and transport in a two-species multi-lane system. Journal of Statistical Mechanics: Theory and Experiment, 2011, 2011, P11011.	0.9	12
132	Stress transmission in systems of faceted particles in a silo: the roles of filling rate and particle aspect ratio. Granular Matter, 2014, 16, 411-420.	1.1	12
133	Mesoscopic electrohydrodynamic simulations of binary colloidal suspensions. Journal of Chemical Physics, 2018, 148, 144101.	1.2	12
134	Nonspherical Nanoparticles in Block Copolymer Composites: Nanosquares, Nanorods, and Diamonds. Macromolecules, 2019, 52, 8285-8294.	2.2	12
135	Obstructions in Vascular Networks: Relation Between Network Morphology and Blood Supply. PLoS ONE, 2015, 10, e0128111.	1.1	12
136	Nucleation phenomenon in nanoparticle self-assemblies. International Journal of Nanotechnology, 2005, 2, 62.	0.1	11
137	Condensation transition in polydisperse hard rods. Journal of Chemical Physics, 2010, 132, 014102.	1.2	11
138	Concentration fluctuations in non-isothermal reaction-diffusion systems. II. The nonlinear case. Journal of Chemical Physics, 2011, 135, 124516.	1.2	11
139	Elastic energies and morphologies of the first stages of the discoechinocyte transition. Soft Matter, 2013, 9, 6430.	1.2	11
140	Rectification and Non-Gaussian Diffusion in Heterogeneous Media. Entropy, 2016, 18, 394.	1.1	11
141	Working under confinement. European Physical Journal: Special Topics, 2014, 223, 3295-3309.	1.2	10
142	Resonances of Newtonian fluids in elastomeric microtubes. Physics of Fluids, 2017, 29, 122003.	1.6	10
143	Active microrheology in corrugated channels. Journal of Chemical Physics, 2018, 149, 174908.	1.2	10
144	Collective behavior of red blood cells in confined channels. European Physical Journal E, 2019, 42, 46.	0.7	10

#	Article	IF	CITATIONS
145	Direct measurement of Lighthill's energetic efficiency of a minimal magnetic microswimmer. Nanoscale, 2019, 11, 18723-18729.	2.8	10
146	Flocking-enhanced social contagion. Physical Review Research, 2020, 2, .	1.3	10
147	Boundary effects in the Rayleigh line for a fluid out of thermal equilibrium. Physica A: Statistical Mechanics and Its Applications, 1991, 173, 111-124.	1.2	9
148	Determination of the zeta potential for highly charged colloidal suspensions. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2011, 369, 2546-2554.	1.6	9
149	Spontaneous polarization and locomotion of an active particle with surface-mobile enzymes. Physical Review Fluids, 2020, 5, .	1.0	9
150	Phenomenological approach to nonlinear Langevin equations. Physical Review E, 1995, 52, 5881-5892.	0.8	8
151	Lattice Boltzmann Modeling of Complex Fluids: Colloidal Suspensions and Fluid Mixtures. Lecture Notes in Physics, 0, , 279-309.	0.3	8
152	Modelling capillary phenomena at a mesoscale: From simple to complex fluids. Journal of Non-Newtonian Fluid Mechanics, 2008, 154, 13-21.	1.0	8
153	Mesoscopic non-equilibrium thermodynamic analysis of molecular motors. Physical Chemistry Chemical Physics, 2013, 15, 19405.	1.3	8
154	Bistability, Oscillations, and Bidirectional Motion of Ensemble of Hydrodynamically Coupled Molecular Motors. Physical Review Letters, 2017, 119, 168101.	2.9	8
155	Cell Dynamic Simulations of Diblock Copolymer/Colloid Systems. Macromolecular Theory and Simulations, 2017, 26, 1600050.	0.6	8
156	Microscale Magneto-Elastic Composite Swimmers at the Air-Water and Water-Solid Interfaces Under a Uniaxial Field. Physical Review Applied, 2019, 11, .	1.5	8
157	Unfolding the prospects of computational (bio)materials modeling. Journal of Chemical Physics, 2020, 153, 100901.	1.2	8
158	Block Copolymer–Nanorod Co-assembly in Thin Films: Effects of Rod–Rod Interaction and Confinement. Macromolecules, 2020, 53, 3234-3249.	2.2	8
159	Thermocapillary motion of a drop in a fluid under external gradients. Faxén theorem. Physica A: Statistical Mechanics and Its Applications, 1995, 213, 277-292.	1.2	7
160	Dynamics of driven three-dimensional thin films: From hydrophilic to superhydrophobic regimes. Physics of Fluids, 2008, 20, 072101.	1.6	7
161	Accurate simulation dynamics of microscopic filaments using "caterpillar―Oseen hydrodynamics. Physical Review E, 2009, 80, 046707.	0.8	7
162	2D melting and motility induced phase separation in Active Brownian Hard Disks and Dumbbells. Journal of Physics: Conference Series, 2019, 1163, 012073.	0.3	7

#	Article	IF	CITATIONS
163	Leap-frog transport of magnetically driven anisotropic colloidal rotors. Journal of Chemical Physics, 2019, 150, 164901.	1.2	7
164	Kinetics of active water/ethanol Janus droplets. Soft Matter, 2020, 16, 6803-6811.	1.2	7
165	Dynamic response of a compressible binary fluid mixture. Physical Review Fluids, 2020, 5, .	1.0	7
166	Alignment interactions drive structural transitions in biological tissues. Physical Review E, 2021, 104, 044606.	0.8	7
167	Small Obstacle in a Large Polar Flock. Physical Review Letters, 2022, 128, .	2.9	7
168	Density fluctuations of assemblies of irreversibly deposited particles on solid surfaces. Journal of Chemical Physics, 1997, 107, 2089-2095.	1.2	6
169	Dynamic stability of spindles controlled by molecular motor kinetics. Europhysics Letters, 2008, 81, 48003.	0.7	6
170	Adsorbed colloids relax slowly. Nature Materials, 2012, 11, 99-100.	13.3	6
171	Universal evolution of a viscous–capillary spreading drop. Soft Matter, 2016, 12, 6073-6078.	1.2	6
172	Unravelling the role of phoretic and hydrodynamic interactions in active colloidal suspensions. Soft Matter, 2020, 16, 8893-8903.	1.2	6
173	On the role of composition entropies in the statistical mechanics of polydisperse systems. Journal of Statistical Mechanics: Theory and Experiment, 2014, 2014, P10038.	0.9	6
174	Cooperativity and hydrodynamic interactions in externally driven semiflexible filaments. Computer Physics Communications, 2008, 179, 150-154.	3.0	5
175	Equation of state for hard-sphere fluids with and without Kac tails. American Journal of Physics, 2008, 76, 777-779.	0.3	5
176	Multi-scale permeability of deformable fibrous porous media. Chemical Engineering Science, 2015, 126, 471-482.	1.9	5
177	When do redundant fluidic networks outperform non-redundant ones?. Europhysics Letters, 2017, 117, 64002.	0.7	5
178	Elastic and dynamic properties of membrane phase-field models. European Physical Journal E, 2017, 40, 77.	0.7	5
179	Co-assembly of Janus nanoparticles in block copolymer systems. Soft Matter, 2019, 15, 6400-6410.	1.2	5
180	Large scale three dimensional simulations of hybrid block copolymer/nanoparticle systems. Soft Matter, 2019, 15, 9325-9335.	1.2	5

#	Article	IF	CITATIONS
181	Propulsion and energetics of a minimal magnetic microswimmer. Soft Matter, 2020, 16, 6673-6682.	1.2	5
182	Active microrheology in corrugated channels: Comparison of thermal and colloidal baths. Journal of Colloid and Interface Science, 2022, 608, 2694-2702.	5.0	5
183	Hydrodynamic and geometric effects in the sedimentation of model run-and-tumble microswimmers. Soft Matter, 2022, 18, 2407-2413.	1.2	5
184	The long cross-over dynamics of capillary imbibition. Journal of Fluid Mechanics, 2022, 939, .	1.4	5
185	Adsorption of amphiphilic grafted polymers as polymer corrosion inhibitors: insights from mesoscopic simulations. Physical Chemistry Chemical Physics, 2022, 24, 11992-12001.	1.3	5
186	Hydrodynamic synchronization and clustering in ratcheting colloidal matter. Science Advances, 2022, 8, .	4.7	5
187	Lattice effects in crystal evaporation. Journal of Physics A, 1994, 27, 1859-1876.	1.6	4
188	Adsorption kinetics in the presence of external fields. Physical Review E, 1999, 59, 4285-4297.	0.8	4
189	Fragmenting granular gases. Europhysics Letters, 2007, 77, 64001.	0.7	4
190	Driven fragmentation of granular gases. Physical Review E, 2008, 77, 061305.	0.8	4
191	Instrinsic oscillations of polymerizing antiparallel microtubules in a motor bath. Europhysics Letters, 2012, 98, 68005.	0.7	4
192	Bidirectional motion of filaments: the role of motor proteins and passive cross linkers. Soft Matter, 2017, 13, 7129-7140.	1.2	4
193	Asymmetric and long range interactions in shaken granular media. Journal of Chemical Physics, 2019, 151, 164903.	1.2	4
194	Orientational order and morphology of clusters of self-assembled Janus swimmers. Physical Review E, 2019, 99, 062602.	0.8	4
195	Self-Assembly of Microscopic Rods Due to Depletion Interaction. Entropy, 2020, 22, 1114.	1.1	4
196	Dynamics and clogging of colloidal monolayers magnetically driven through a heterogeneous landscape. Soft Matter, 2020, 16, 6985-6992.	1.2	4
197	Collective motion of run-and-tumble repulsive and attractive particles in one-dimensional systems. Soft Matter, 2021, 17, 10479-10491.	1.2	4
198	Nematic Ordering of Anisotropic Nanoparticles in Block Copolymers. Advanced Theory and Simulations, 2022, 5, .	1.3	4

Ignacio Pagonabarraga

#	Article	IF	CITATIONS
199	Nanoparticle anisotropy induces sphere-to-cylinder phase transition in block copolymer melts. Soft Matter, 2022, 18, 3638-3643.	1.2	4
200	Impact of dipole $\hat{a} \in \hat{a}$ dipole interactions on motility-induced phase separation. Soft Matter, 0, , .	1.2	4
201	Dynamics of Gravity Driven Three-Dimensional Thin Films on Hydrophilicâ^'Hydrophobic Patterned Substrates. Langmuir, 2010, 26, 3292-3301.	1.6	3
202	Rheological behavior of colloidal suspension with long-range interactions. Physical Review E, 2018, 98, .	0.8	3
203	Aggregation of discoidal particles due to depletion interaction. Journal of Chemical Physics, 2021, 155, 074904.	1.2	3
204	Negative fluctuation-dissipation ratios in the backgammon model. Physical Review E, 2009, 79, 041122.	0.8	2
205	Growth saturation of unstable thin films on transverse-striped hydrophilic-hydrophobic micropatterns. Soft Matter, 2011, 7, 6051.	1.2	2
206	Driven transport on open filaments with interfilament switching processes. Physical Review E, 2017, 95, 022417.	0.8	2
207	Modification of lipid membrane compressibility induced by an electric field. Physical Review E, 2020, 102, 062413.	0.8	2
208	Parallel Hybrid Simulations of Block Copolymer Nanocomposites using Coarray Fortran. Macromolecular Theory and Simulations, 2021, 30, 2100007.	0.6	2
209	Novel mechanism for oscillations in catchbonded motor-filament complexes. Biophysical Journal, 2021, 120, 4129-4136.	0.2	2
210	Spontaneous chiralization of polar active particles. Physical Review E, 2021, 104, 044607.	0.8	2
211	Hybrid Time-Dependent Ginzburg–Landau Simulations of Block Copolymer Nanocomposites: Nanoparticle Anisotropy. Polymers, 2022, 14, 1910.	2.0	2
212	Maximizing friction by liquid flow clogging in confinement. European Physical Journal E, 2022, 45, .	0.7	2
213	Adsorption of colloidal particles: influence of transport (hydrodynamic interactions). Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1997, 127, 249-255.	2.3	1
214	Collision induced fragmentation: A simple numerical algorithm. European Physical Journal: Special Topics, 2009, 179, 43-53.	1.2	1
215	Nonisothermal diffusion–reaction with nonlinear Kramers kinetics. Comptes Rendus - Mecanique, 2011, 339, 287-291.	2.1	1
216	Stabilization of overlapping biofilaments by passive crosslinkers. Europhysics Letters, 2018, 124, 58003.	0.7	1

#	Article	IF	CITATIONS
217	Cooperative Effects in Biological Suspensions: From Filaments to Propellers. Lecture Notes in Physics, 2009, , 133-152.	0.3	1
218	Influence of transport on the adsorption of colloidal suspensions. Journal of Molecular Liquids, 1997, 71, 137-149.	2.3	0
219	Publisher's Note: Synchronization in Dynamical Networks of Locally Coupled Self-Propelled Oscillators [Phys. Rev. X 7 , 011028 (2017)]. Physical Review X, 2017, 7, .	2.8	0
220	Superparamagnetic Colloids: Static and Dynamic Selfâ€Assembly of Pearlâ€Likeâ€Chains of Magnetic Colloids Confined at Fluid Interfaces (Small 25/2021). Small, 2021, 17, 2170127.	5.2	0
221	Understanding Liquid/Colloids Composites with Mesoscopic Simulations. Nanoscience and Technology, 2007, , 587-615.	1.5	0
222	A lattice Boltzmann model for self-diffusiophoretic particles near and at liquid–liquid interfaces. Journal of Chemical Physics, 2022, 156, 224105.	1.2	0