
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5356984/publications.pdf Version: 2024-02-01

ΤΕΡΙΙΛΚΙ ΝΛΚΑΤΩΙΙΙ

#	Article	IF	CITATIONS
1	Staphylococcus epidermidis protease EcpA can be a deleterious component of the skin microbiome in atopic dermatitis. Journal of Allergy and Clinical Immunology, 2021, 147, 955-966.e16.	1.5	90
2	Sphingosine 1-Phosphate Receptor 2 Is Central to Maintaining Epidermal Barrier Homeostasis. Journal of Investigative Dermatology, 2021, 141, 1188-1197.e5.	0.3	12
3	Development of a human skin commensal microbe for bacteriotherapy of atopic dermatitis and use in a phase 1 randomized clinical trial. Nature Medicine, 2021, 27, 700-709.	15.2	142
4	Cutaneous innate immune tolerance is mediated by epigenetic control of MAP2K3 by HDAC8/9. Science Immunology, 2021, 6, .	5.6	33
5	Use of Autologous Bacteriotherapy to Treat <i>Staphylococcus aureus</i> in Patients With Atopic Dermatitis. JAMA Dermatology, 2021, 157, 978.	2.0	28
6	Mechanisms for control of skin immune function by the microbiome. Current Opinion in Immunology, 2021, 72, 324-330.	2.4	24
7	Antimicrobials from a feline commensal bacterium inhibit skin infection by drug-resistant S. pseudintermedius. ELife, 2021, 10, .	2.8	14
8	IL-4Rα Blockade by Dupilumab Decreases Staphylococcus aureus Colonization and Increases Microbial Diversity in Atopic Dermatitis. Journal of Investigative Dermatology, 2020, 140, 191-202.e7.	0.3	130
9	Hyaluronan Degradation by Cemip Regulates Host Defense against Staphylococcus aureus Skin Infection. Cell Reports, 2020, 30, 61-68.e4.	2.9	27
10	Short chain fatty acids produced by Cutibacterium acnes inhibit biofilm formation by Staphylococcus epidermidis. Scientific Reports, 2020, 10, 21237.	1.6	46
11	Identification of a Human Skin Commensal Bacterium that Selectively Kills CutibacteriumÂacnes. Journal of Investigative Dermatology, 2020, 140, 1619-1628.e2.	0.3	47
12	A Nitric Oxide–Releasing Topical Medication asÂaÂPotential Treatment Option for Atopic Dermatitis through Antimicrobial and Anti-Inflammatory Activity. Journal of Investigative Dermatology, 2020, 140, 2531-2535.e2.	0.3	8
13	Response to Comment on "A commensal strain of <i>Staphylococcus epidermidis</i> protects against skin neoplasia―by Nakatsuji <i>et al</i> Science Advances, 2019, 5, eaay5611.	4.7	2
14	Quorum sensing between bacterial species on the skin protects against epidermal injury in atopic dermatitis. Science Translational Medicine, 2019, 11, .	5.8	185
15	Dilute bleach baths used for treatment of atopic dermatitis are not antimicrobial inÂvitro. Journal of Allergy and Clinical Immunology, 2019, 143, 1946-1948.	1.5	43
16	The role of the skin microbiome in atopic dermatitis. Annals of Allergy, Asthma and Immunology, 2019, 122, 263-269.	0.5	99
17	A commensal strain of <i>Staphylococcus epidermidis</i> protects against skin neoplasia. Science Advances, 2018, 4, eaao4502.	4.7	183
18	Hyaluronidase inhibits reactive adipogenesis and inflammation of colon and skin. JCI Insight, 2018, 3, .	2.3	34

#	Article	IF	CITATIONS
19	Antimicrobials from human skin commensal bacteria protect against <i>Staphylococcus aureus</i> and are deficient in atopic dermatitis. Science Translational Medicine, 2017, 9, .	5.8	744
20	Staphylococcus aureus: Master Manipulator of the Skin. Cell Host and Microbe, 2017, 22, 579-581.	5.1	52
21	Staphylococcus aureus Induces Increased Serine Protease Activity in Keratinocytes. Journal of Investigative Dermatology, 2017, 137, 377-384.	0.3	122
22	The Cutaneous Microbiome and Aspects of Skin Antimicrobial Defense System Resist Acute Treatment with Topical Skin Cleansers. Journal of Investigative Dermatology, 2016, 136, 1950-1954.	0.3	46
23	Staphylococcus aureus Exploits Epidermal Barrier Defects in Atopic Dermatitis to Trigger Cytokine Expression. Journal of Investigative Dermatology, 2016, 136, 2192-2200.	0.3	260
24	The Parathyroid Hormone Second Receptor PTH2R and its Ligand Tuberoinfundibular Peptide of 39 Residues TIP39 Regulate Intracellular Calcium and Influence Keratinocyte Differentiation. Journal of Investigative Dermatology, 2016, 136, 1449-1459.	0.3	21
25	<i>Ixodes</i> tick saliva suppresses the keratinocyte cytokine response to <scp>TLR</scp> 2/ <scp>TLR</scp> 3 ligands during early exposure to Lyme borreliosis. Experimental Dermatology, 2016, 25, 26-31.	1.4	37
26	Molecular cartography of the human skin surface in 3D. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E2120-9.	3.3	288
27	Vaccinia Virus Binds to the Scavenger Receptor MARCO on the Surface of Keratinocytes. Journal of Investigative Dermatology, 2015, 135, 142-150.	0.3	34
28	Vesicular LL-37 Contributes to Inflammation of the Lesional Skin of Palmoplantar Pustulosis. PLoS ONE, 2014, 9, e110677.	1.1	34
29	Dermatological Therapy by Topical Application of Non-Pathogenic Bacteria. Journal of Investigative Dermatology, 2014, 134, 11-14.	0.3	22
30	Reduction in Serine Protease Activity Correlates with Improved Rosacea Severity in a Small, Randomized Pilot Study of a Topical Serine Protease Inhibitor. Journal of Investigative Dermatology, 2014, 134, 1143-1145.	0.3	34
31	The microbiome extends to subepidermal compartments of normal skin. Nature Communications, 2013, 4, 1431.	5.8	361
32	HSV-1 exploits the innate immune scavenger receptor MARCO to enhance epithelial adsorption and infection. Nature Communications, 2013, 4, 1963.	5.8	39
33	Doxycycline Indirectly Inhibits Proteolytic Activation of Tryptic Kallikrein-Related Peptidases and Activation of Cathelicidin. Journal of Investigative Dermatology, 2012, 132, 1435-1442.	0.3	87
34	Antimicrobial Peptides: Old Molecules with New Ideas. Journal of Investigative Dermatology, 2012, 132, 887-895.	0.3	308
35	Ultraviolet radiation damages self noncoding RNA and is detected by TLR3. Nature Medicine, 2012, 18, 1286-1290.	15.2	340
36	TLR2 Expression Is Increased in Rosacea and Stimulates Enhanced Serine Protease Production by Keratinocytes. Journal of Investigative Dermatology, 2011, 131, 688-697.	0.3	269

#	Article	IF	CITATIONS
37	Microbial Symbiosis with the Innate Immune Defense System of the Skin. Journal of Investigative Dermatology, 2011, 131, 1974-1980.	0.3	289
38	Passive immunoprotection targeting a secreted CAMP factor of Propionibacterium acnes as a novel immunotherapeutic for acne vulgaris. Vaccine, 2011, 29, 3230-3238.	1.7	53
39	Propionibacterium acnes CAMP Factor and Host Acid Sphingomyelinase Contribute to Bacterial Virulence: Potential Targets for Inflammatory Acne Treatment. PLoS ONE, 2011, 6, e14797.	1.1	98
40	An Innate Bactericidal Oleic Acid Effective Against Skin Infection of Methicillin-Resistant Staphylococcus aureus: A Therapy Concordant with Evolutionary Medicine. Journal of Microbiology and Biotechnology, 2011, 21, 391-399.	0.9	61
41	Occurrence and distribution of capB in Antarctic microorganisms and study of its structure and regulation in the Antarctic biodegradative Pseudomonas sp. 30/3. Extremophiles, 2010, 14, 171-183.	0.9	16
42	Sebum Free Fatty Acids Enhance the Innate Immune Defense of Human Sebocytes by Upregulating β-Defensin-2 Expression. Journal of Investigative Dermatology, 2010, 130, 985-994.	0.3	182
43	Crustacean molt-inhibiting hormone: Structure, function, and cellular mode of action. Comparative Biochemistry and Physiology Part A, Molecular & Integrative Physiology, 2009, 152, 139-148.	0.8	107
44	Histone H4 Is a Major Component of the Antimicrobial Action of Human Sebocytes. Journal of Investigative Dermatology, 2009, 129, 2489-2496.	0.3	106
45	Antimicrobial Property of Lauric Acid Against Propionibacterium Acnes: Its Therapeutic Potential for Inflammatory Acne Vulgaris. Journal of Investigative Dermatology, 2009, 129, 2480-2488.	0.3	266
46	Commensal bacteria regulate Toll-like receptor 3–dependent inflammation after skin injury. Nature Medicine, 2009, 15, 1377-1382.	15.2	620
47	The antimicrobial activity of liposomal lauric acids against Propionibacterium acnes. Biomaterials, 2009, 30, 6035-6040.	5.7	161
48	Proteomics integrated with <i>Escherichia coli</i> vectorâ€based vaccines and antigen microarrays reveals the immunogenicity of a surface sialidaseâ€like protein of <i>Propionibacterium acnes</i> . Proteomics - Clinical Applications, 2008, 2, 1234-1245.	0.8	7
49	Antibodies Elicited by Inactivated Propionibacterium acnes-Based Vaccines Exert Protective Immunity and Attenuate the IL-8 Production in Human Sebocytes: Relevance to Therapy for Acne Vulgaris. Journal of Investigative Dermatology, 2008, 128, 2451-2457.	0.3	68
50	Studies of a receptor guanylyl cyclase cloned from Y-organs of the blue crab (Callinectes sapidus), and its possible functional link to ecdysteroidogenesis. General and Comparative Endocrinology, 2008, 155, 780-788.	0.8	22
51	Bioengineering a humanized acne microenvironment model: Proteomics analysis of host responses to <i>Propionibacterium acnes</i> infection <i>in vivo</i> . Proteomics, 2008, 8, 3406-3415.	1.3	34
52	In Vivo Tumor Secretion Probing Via Ultrafiltration and Tissue Chamber:Implication for Anti-Cancer Drugs Targeting Secretome. Recent Patents on Anti-Cancer Drug Discovery, 2008, 3, 48-54.	0.8	10
53	Vaccination Targeting a Surface Sialidase of P. acnes: Implication for New Treatment of Acne Vulgaris. PLoS ONE, 2008, 3, e1551.	1.1	68
54	Vaccine Therapy for P. acnes-Associated Diseases. Infectious Disorders - Drug Targets, 2008, 8, 160-165.	0.4	15

#	Article	IF	CITATIONS
55	Potential Targets of P. acnes for New Treatments of P. acnes-Associated Diseases. Current Proteomics, 2007, 4, 157-161.	0.1	0
56	Molt-inhibiting hormone-mediated regulation of ecdysteroid synthesis in Y-organs of the crayfish (Procambarus clarkii): Involvement of cyclic GMP and cyclic nucleotide phosphodiesterase. Molecular and Cellular Endocrinology, 2006, 253, 76-82.	1.6	45
57	Expression of crustacean (Callinectes sapidus) molt-inhibiting hormone in Escherichia coli: Characterization of the recombinant peptide and assessment of its effects on cellular signaling pathways in Y-organs. Molecular and Cellular Endocrinology, 2006, 253, 96-104.	1.6	28
58	Cloning and characterization of a molt-inhibiting hormone-like peptide from the prawn Marsupenaeus japonicus. Peptides, 2005, 26, 259-268.	1.2	42
59	Regulation of ecdysteroid secretion from the Y-organ by molt-inhibiting hormone in the American crayfish, Procambarus clarkii. General and Comparative Endocrinology, 2004, 135, 358-364.	0.8	95
60	Measurement of Molt-inhibiting Hormone Titer in Hemolymph of the American Crayfish, Procambarus clarkii, by Time-Resolved Fluoroimmunoassay. Zoological Science, 2003, 20, 999-1001.	0.3	18
61	The Molt-Inhibiting Hormone in the American Crayfish Procambarus clarkii: Its Chemical Synthesis and Biological Activity. General and Comparative Endocrinology, 2001, 121, 196-204.	0.8	25
62	Synthesis of a Molt-Inhibiting Hormone of the American Crayfish Procambarus Clarkii, and Determination of the Location of Its Disulfide Linkages. Journal of Biochemistry, 2000, 128, 455-461.	0.9	22
63	Changes in the Amounts of the Molt-Inhibiting Hormone in Sinus Glands during the Molt Cycle of the American Crayfish, Procambarus clarkii. Zoological Science, 2000, 17, 1129-1136.	0.3	42