Shiuan-Pey Lin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5356475/publications.pdf

Version: 2024-02-01

516710 526287 34 751 16 27 citations g-index h-index papers 34 34 34 1184 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Bidirectional Influences of Cranberry on the Pharmacokinetics and Pharmacodynamics of Warfarin with Mechanism Elucidation. Nutrients, 2021, 13, 3219.	4.1	4
2	Folium Sennae Increased the Bioavailability of Methotrexate through Modulation on MRP 2 and BCRP. Pharmaceuticals, 2021, 14, 1036.	3.8	2
3	Magnolol and Honokiol Inhibited the Function and Expression of BCRP with Mechanism Exploration. Molecules, 2021, 26, 7390.	3.8	10
4	Effects of antibiotics on the pharmacokinetics of indoxyl sulfate, a nephro-cardiovascular toxin. Xenobiotica, 2020, 50, 588-592.	1.1	6
5	Resveratrol stereoselectively affected $(\hat{A}\pm)$ warfarin pharmacokinetics and enhanced the anticoagulation effect. Scientific Reports, 2020, 10, 15910.	3.3	10
6	Transporter-mediated interaction of indican and methotrexate in rats. Journal of Food and Drug Analysis, 2018, 26, S133-S140.	1.9	9
7	Activation of P-glycoprotein and CYP 3A by Coptidis Rhizoma inÂvivo : Using cyclosporine as a probe substrate in rats. Journal of Food and Drug Analysis, 2018, 26, S125-S132.	1.9	25
8	R- and S-Warfarin Were Transported by Breast Cancer Resistance Protein: From InÂVitro to Pharmacokinetic-Pharmacodynamic Studies. Journal of Pharmaceutical Sciences, 2017, 106, 1419-1425.	3.3	10
9	Effects of nonsteroidal anti-inflammatory drugs on the renal excretion of indoxyl sulfate, a nephro-cardiovascular toxin, in rats. European Journal of Pharmaceutical Sciences, 2017, 101, 66-70.	4.0	20
10	Aloe Metabolites Prevent LPS-Induced Sepsis and Inflammatory Response by Inhibiting Mitogen-Activated Protein Kinase Activation. The American Journal of Chinese Medicine, 2017, 45, 847-861.	3.8	33
11	Aloe activated P-glycoprotein and CYP 3A: a study on the serum kinetics of aloe and its interaction with cyclosporine in rats. Food and Function, 2017, 8, 315-322.	4.6	17
12	The Inhibitory Mechanisms Study of 5,6,4′-Trihydroxy-7,3′-Dimethoxyflavone against the LPS-Induced Macrophage Inflammatory Responses through the Antioxidant Ability. Molecules, 2016, 21, 136.	3.8	4
13	Analysis of the pharmacokinetics and metabolism of aloeâ€emodin following intravenous and oral administrations in rats. Biomedical Chromatography, 2016, 30, 1641-1647.	1.7	19
14	Rhubarb decreased the systemic exposure of cyclosporine, a probe substrate of P-glycoprotein and CYP 3A. Xenobiotica, 2016, 46, 677-682.	1.1	14
15	Green tea inhibited the elimination of nephro-cardiovascular toxins and deteriorated the renal function in rats with renal failure. Scientific Reports, 2015, 5, 16226.	3. 3	14
16	Metabolites of Scutellariae Radix Inhibit Injury of Endothelial Cells in Hypoxia Device. Journal of Medical and Biological Engineering, 2015, 35, 492-499.	1.8	0
17	The acute effects of green tea and carbohydrate coingestion on systemic inflammation and oxidative stress during sprint cycling. Applied Physiology, Nutrition and Metabolism, 2015, 40, 997-1003.	1.9	14
18	Serum Concentrations of Anthraquinones after Intake of Folium Sennae and Potential Modulation on P-glycoprotein. Planta Medica, 2014, 80, 1291-1297.	1.3	11

#	Article	IF	Citations
19	Enhancing the bioavailability of magnolol in rabbits using melting solid dispersion with polyvinylpyrrolidone. Drug Development and Industrial Pharmacy, 2014, 40, 330-337.	2.0	18
20	Potential modulation on BCRP and MRP 4 by onion: in vivo and ex-vivo studies. Journal of Functional Foods, 2014, 8, 243-251.	3.4	3
21	Tissue distribution of naringenin conjugated metabolites following repeated dosing of naringin to		