List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5356458/publications.pdf Version: 2024-02-01

<u> Αλοτ Ι Κριμιτ</u>

#	Article	IF	CITATIONS
1	Changes in leaf functional traits with leaf age: when do leaves decrease their photosynthetic capacity in Amazonian trees?. Tree Physiology, 2022, 42, 922-938.	3.1	14
2	Tropical tree growth driven by dry-season climate variability. Nature Geoscience, 2022, 15, 269-276.	12.9	38
3	Drought resilience of conifer species is driven by leaf lifespan but not by hydraulic traits. New Phytologist, 2022, 235, 978-992.	7.3	17
4	Method comparison of indirect assessments of understory leaf area index (LAIu): A case study across the extended network of ICOS forest ecosystem sites in Europe. Ecological Indicators, 2021, 128, 107841.	6.3	12
5	Retrieval and validation of forest background reflectivity from daily Moderate Resolution Imaging Spectroradiometer (MODIS) bidirectional reflectance distribution function (BRDF) data across European forests. Biogeosciences, 2021, 18, 621-635.	3.3	12
6	ForestTemp – Subâ€canopy microclimate temperatures of European forests. Global Change Biology, 2021, 27, 6307-6319.	9.5	57
7	Evapotranspiration and gross primary productivity of secondary vegetation in Amazonia inferred by eddy covariance. Agricultural and Forest Meteorology, 2020, 294, 108141.	4.8	14
8	The FLUXNET2015 dataset and the ONEFlux processing pipeline for eddy covariance data. Scientific Data, 2020, 7, 225.	5.3	646
9	Altered energy partitioning across terrestrial ecosystems in the European drought year 2018. Philosophical Transactions of the Royal Society B: Biological Sciences, 2020, 375, 20190524.	4.0	35
10	Carbon–nitrogen interactions in European forests and semi-natural vegetation – Part 1: Fluxes and budgets of carbon, nitrogen and greenhouse gases from ecosystem monitoring and modelling. Biogeosciences, 2020, 17, 1583-1620.	3.3	21
11	Response of the river discharge in the Tocantins River Basin, Brazil, to environmental changes and the associated effects on the energy potential. Regional Environmental Change, 2019, 19, 193-204.	2.9	21
12	Amazon forest response to CO2 fertilization dependent on plant phosphorus acquisition. Nature Geoscience, 2019, 12, 736-741.	12.9	177
13	Modelling the response of net primary productivity of the Zambezi teak forests to climate change along a rainfall gradient in Zambia. Biogeosciences, 2019, 16, 3853-3867.	3.3	3
14	Performance of Laser-Based Electronic Devices for Structural Analysis of Amazonian Terra-Firme Forests. Remote Sensing, 2019, 11, 510.	4.0	7
15	Below and above-ground carbon distribution along a rainfall gradient. A case of the Zambezi teak forests, Zambia. Acta Oecologica, 2018, 87, 45-57.	1.1	7
16	Data for developing allometric models and evaluating carbon stocks of the Zambezi Teak Forests in Zambia. Data in Brief, 2018, 17, 1361-1373.	1.0	2
17	Recent progress in understanding climate thresholds. Progress in Physical Geography, 2018, 42, 24-60.	3.2	18
18	Flood tolerance in two tree species that inhabit both the Amazonian floodplain and the dry Cerrado savanna of Brazil. AoB PLANTS, 2018, 10, ply065.	2.3	11

#	Article	IF	CITATIONS
19	Limiting the high impacts of Amazon forest dieback with no-regrets science and policy action. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 11671-11679.	7.1	38
20	Widespread reduction in sun-induced fluorescence from the Amazon during the 2015/2016 El Niño. Philosophical Transactions of the Royal Society B: Biological Sciences, 2018, 373, 20170408.	4.0	57
21	Prediction of photosynthesis in Scots pine ecosystems across Europe by a needle-level theory. Atmospheric Chemistry and Physics, 2018, 18, 13321-13328.	4.9	Ο
22	Quantifying the effect of forest age in annual net forest carbon balance. Environmental Research Letters, 2018, 13, 124018.	5.2	67
23	The dendrochronological potential of Baikiaea plurijuga in Zambia. Dendrochronologia, 2017, 41, 65-77.	2.2	10
24	Impacts of future deforestation and climate change on the hydrology of the Amazon Basin: a multi-model analysis with a new set of land-cover change scenarios. Hydrology and Earth System Sciences, 2017, 21, 1455-1475.	4.9	69
25	Canopy-scale biophysical controls of transpiration and evaporation in the Amazon Basin. Hydrology and Earth System Sciences, 2016, 20, 4237-4264.	4.9	62
26	Linking hydraulic traits to tropical forest function in a size-structured and trait-driven model (TFSÂv.1-Hydro). Geoscientific Model Development, 2016, 9, 4227-4255.	3.6	211
27	Modelling Amazonian Carbon Budgets and Vegetation Dynamics in a Changing Climate. Ecological Studies, 2016, , 331-366.	1.2	3
28	Variation in stem mortality rates determines patterns of aboveâ€ground biomass in <scp>A</scp> mazonian forests: implications for dynamic global vegetation models. Global Change Biology, 2016, 22, 3996-4013.	9.5	116
29	After more than a decade of soil moisture deficit, tropical rainforest trees maintain photosynthetic capacity, despite increased leaf respiration. Global Change Biology, 2015, 21, 4662-4672.	9.5	67
30	Modelling short-term variability in carbon and water exchange in a temperate Scots pine forest. Earth System Dynamics, 2015, 6, 485-503.	7.1	8
31	The sensitivity of wet and dry tropical forests to climate change in Bolivia. Journal of Geophysical Research G: Biogeosciences, 2015, 120, 399-413.	3.0	22
32	Soil CO2 exchange in seven pristine Amazonian rain forest sites in relation to soil temperature. Agricultural and Forest Meteorology, 2014, 192-193, 96-107.	4.8	16
33	Modeling forest dynamics along climate gradients in Bolivia. Journal of Geophysical Research G: Biogeosciences, 2014, 119, 758-775.	3.0	24
34	Mechanisms of water supply and vegetation demand govern the seasonality and magnitude of evapotranspiration in Amazonia and Cerrado. Agricultural and Forest Meteorology, 2014, 191, 33-50.	4.8	105
35	The use of radiocarbon to constrain current and future soil organic matter turnover and transport in a temperate forest. Journal of Geophysical Research G: Biogeosciences, 2014, 119, 372-391.	3.0	26
36	What drives the seasonality of photosynthesis across the Amazon basin? A cross-site analysis of eddy flux tower measurements from the Brasil flux network. Agricultural and Forest Meteorology, 2013, 182-183, 128-144.	4.8	255

#	Article	IF	CITATIONS
37	Modeling the vertical soil organic matter profile using Bayesian parameter estimation. Biogeosciences, 2013, 10, 399-420.	3.3	50
38	Evapotranspiration of deforested areas in central and southwestern Amazonia. Theoretical and Applied Climatology, 2012, 109, 205-220.	2.8	25
39	Soil CO2 efflux in central Amazonia: environmental and methodological effects. Acta Amazonica, 2012, 42, 173-184.	0.7	10
40	Drought and ecosystem carbon cycling. Agricultural and Forest Meteorology, 2011, 151, 765-773.	4.8	446
41	Assessing the uncertainty of estimated annual totals of net ecosystem productivity: A practical approach applied to a mid latitude temperate pine forest. Agricultural and Forest Meteorology, 2011, 151, 1823-1830.	4.8	43
42	SOMPROF: A vertically explicit soil organic matter model. Ecological Modelling, 2011, 222, 1712-1730.	2.5	75
43	Influence of drainage status on soil and water chemistry, litter decomposition and soil respiration in central Amazonian forests on sandy soils. Revista Ambiente & Ãgua, 2011, 6, 6-29.	0.3	18
44	Variability in carbon exchange of European croplands. Agriculture, Ecosystems and Environment, 2010, 139, 325-335.	5.3	71
45	Carbon exchange of a maize (Zea mays L.) crop: Influence of phenology. Agriculture, Ecosystems and Environment, 2010, 139, 316-324.	5.3	66
46	The spatial variability of CO2 storage and the interpretation of eddy covariance fluxes in central Amazonia. Agricultural and Forest Meteorology, 2010, 150, 226-237.	4.8	42
47	Estimativa do Ãndice de Ãrea Foliar (IAF) e Biomassa em pastagem no estado de Rondônia, Brasil. Acta Amazonica, 2009, 39, 335-347.	0.7	24
48	Changes in Amazonian forest biomass, dynamics, and composition, 1980–2002. Geophysical Monograph Series, 2009, , 373-387.	0.1	16
49	Patterns of water and heat flux across a biome gradient from tropical forest to savanna in Brazil. Journal of Geophysical Research, 2009, 114, .	3.3	220
50	Ecosystem carbon fluxes and Amazonian forest metabolism. Geophysical Monograph Series, 2009, , 389-407.	0.1	18
51	Effects of rising atmospheric CO2 on evapotranspiration and soil moisture: A practical approach for the Netherlands. Journal of Hydrology, 2008, 349, 257-267.	5.4	98
52	Statistical properties of random CO2 flux measurement uncertainty inferred from model residuals. Agricultural and Forest Meteorology, 2008, 148, 38-50.	4.8	128
53	Exploring eddy-covariance and large-aperture scintillometer measurements in an Amazonian rain forest. Agricultural and Forest Meteorology, 2008, 148, 680-690.	4.8	48
54	NOCTURNAL ACCUMULATION OF CO ₂ UNDERNEATH A TROPICAL FOREST CANOPY ALONG A TOPOGRAPHICAL GRADIENT. Ecological Applications, 2008, 18, 1406-1419.	3.8	46

#	Article	IF	CITATIONS
55	Implications of CO ₂ pooling on Î ¹³ C of ecosystem respiration and leaves in Amazonian forest. Biogeosciences, 2008, 5, 779-795.	3.3	7
56	Isoprene and monoterpene fluxes from Central Amazonian rainforest inferred from tower-based and airborne measurements, and implications on the atmospheric chemistry and the local carbon budget. Atmospheric Chemistry and Physics, 2007, 7, 2855-2879.	4.9	181
57	An airborne regional carbon balance for Central Amazonia. Biogeosciences, 2007, 4, 759-768.	3.3	40
58	CO ₂ balance of boreal, temperate, and tropical forests derived from a global database. Global Change Biology, 2007, 13, 2509-2537.	9.5	863
59	Low-frequency modulation of the atmospheric surface layer over Amazonian rain forest and its implication for similarity relationships. Agricultural and Forest Meteorology, 2006, 141, 192-207.	4.8	27
60	ECOLOGICAL RESEARCH IN THE LARGE-SCALE BIOSPHERE– ATMOSPHERE EXPERIMENT IN AMAZONIA: EARLY RESULTS. , 2004, 14, 3-16.		130
61	RESPIRATION FROM A TROPICAL FOREST ECOSYSTEM: PARTITIONING OF SOURCES AND LOW CARBON USE EFFICIENCY. , 2004, 14, 72-88.		344
62	Variation of carbon and nitrogen cycling processes along a topographic gradient in a central Amazonian forest. Global Change Biology, 2004, 10, 592-600.	9.5	200
63	Comparative measurements and seasonal variations in energy and carbon exchange over forest and pasture in South West Amazonia. Theoretical and Applied Climatology, 2004, 78, 5.	2.8	277
64	Efeitos de um evento de friagem nas condições meteorológicas na Amazônia: um estudo de caso. Acta Amazonica, 2004, 34, 613-619.	0.7	12
65	Scale variability of atmospheric surface layer fluxes of energy and carbon over a tropical rain forest in southwest Amazonia 1. Diurnal conditions. Journal of Geophysical Research, 2002, 107, LBA 29-1.	3.3	45
66	Acclimation of photosynthetic capacity to irradiance in tree canopies in relation to leaf nitrogen concentration and leaf mass per unit area. Plant, Cell and Environment, 2002, 25, 343-357.	5.7	305
67	Turbulence Statistics Above And Within Two Amazon Rain Forest Canopies. Boundary-Layer Meteorology, 2000, 94, 297-331.	2.3	138
68	Acclimation of photosynthesis to light: a mechanistic approach. Functional Ecology, 1999, 13, 24-36.	3.6	69
69	Light distribution and foliage structure in an oak canopy. Trees - Structure and Function, 1999, 14, 55.	1.9	94
70	Leaf photosynthetic light response: a mechanistic model for scaling photosynthesis to leaves and canopies. Functional Ecology, 1998, 12, 767-777.	3.6	102
71	Carbon dioxide transfer over a Central Amazonian rain forest. Journal of Geophysical Research, 1998, 103, 31593-31612.	3.3	366
72	Forest edges and the soil-vegetation- atmosphere interaction at the landscape scale: the state of affairs. Progress in Physical Geography, 1996, 20, 292-310.	3.2	25

#	Article	IF	CITATIONS
73	Vegetation Effects on the Isotopic Composition of Atmospheric CO2 at Local and Regional Scales: Theoretical Aspects and a Comparison Between Rain Forest in Amazonia and a Boreal Forest in Siberia. Functional Plant Biology, 1996, 23, 371.	2.1	118
74	Estimating Canopy Structure of an Oak Forest at Several Scales. Forestry, 1989, 62, 269-284.	2.3	14