Peter Westh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5355912/publications.pdf

Version: 2024-02-01

194 papers

6,489 citations

43 h-index 65 g-index

200 all docs

 $\begin{array}{c} 200 \\ \\ \text{docs citations} \end{array}$

times ranked

200

5815 citing authors

#	Article	IF	CITATIONS
1	Structureâ€function analysis of two closely related cutinases from <i>Thermobifida cellulosilytica</i> . Biotechnology and Bioengineering, 2022, 119, 470-481.	1.7	15
2	Sabatier Principle for Rationalizing Enzymatic Hydrolysis of a Synthetic Polyester. Jacs Au, 2022, 2, 1223-1231.	3 . 6	30
3	Virtual Bioprospecting of Interfacial Enzymes: Relating Sequence and Kinetics. ACS Catalysis, 2022, 12, 7427-7435.	5. 5	11
4	Tunable mixed micellization of β-casein in the presence of β-casein. Food Hydrocolloids, 2021, 113, 106459.	5 . 6	7
5	A comparative biochemical investigation of the impeding effect of C1-oxidizing LPMOs on cellobiohydrolases. Journal of Biological Chemistry, 2021, 296, 100504.	1.6	11
6	Impact of Alginate Mannuronic-Guluronic Acid Contents and pH on Protein Binding Capacity and Complex Size. Biomacromolecules, 2021, 22, 649-660.	2.6	19
7	Thermodynamic and structural study of DMPC–alkanol systems. Physical Chemistry Chemical Physics, 2021, 23, 8598-8606.	1.3	2
8	Computing Cellulase Kinetics with a Two-Domain Linear Interaction Energy Approach. ACS Omega, 2021, 6, 1547-1555.	1.6	7
9	Comparative Biochemistry of Four Polyester (PET) Hydrolases**. ChemBioChem, 2021, 22, 1627-1637.	1.3	54
10	Surface display as a functional screening platform for detecting enzymes active on PET. Microbial Cell Factories, 2021, 20, 93.	1.9	15
11	Physical constraints and functional plasticity of cellulases. Nature Communications, 2021, 12, 3847.	5.8	21
12	Semi-empirical Analysis of Complex ITC Data from Protein–Surfactant Interactions. Analytical Chemistry, 2021, 93, 12698-12706.	3.2	6
13	Two different regimes in alcohol-induced coil–helix transition: effects of 2,2,2-trifluoroethanol on proteins being either independent of or enhanced by solvent structural fluctuations. Physical Chemistry Chemical Physics, 2021, 23, 5760-5772.	1.3	6
14	Adsorption of enzymes with hydrolytic activity on polyethylene terephthalate. Enzyme and Microbial Technology, 2021, 152, 109937.	1.6	21
15	OUP accepted manuscript. Glycobiology, 2021, , .	1.3	2
16	pH profiles of cellulases depend on the substrate and architecture of the binding region. Biotechnology and Bioengineering, 2020, 117, 382-391.	1.7	7
17	Substrate binding in the processive cellulase Cel7A: Transition state of complexation and roles of conserved tryptophan residues. Journal of Biological Chemistry, 2020, 295, 1454-1463.	1.6	14
18	Structural and biochemical characterization of a family 7 highly thermostable endoglucanase from the fungus <i>Rasamsonia emersonii</i>). FEBS Journal, 2020, 287, 2577-2596.	2.2	11

#	Article	IF	CITATIONS
19	A suspension-based assay and comparative detection methods for characterization of polyethylene terephthalate hydrolases. Analytical Biochemistry, 2020, 607, 113873.	1.1	35
20	Activity of fungal Î ² -glucosidases on cellulose. Biotechnology for Biofuels, 2020, 13, 121.	6.2	5
21	Removal of N-linked glycans in cellobiohydrolase Cel7A from Trichoderma reesei reveals higher activity and binding affinity on crystalline cellulose. Biotechnology for Biofuels, 2020, 13, 136.	6.2	15
22	Promoting and Impeding Effects of Lytic Polysaccharide Monooxygenases on Glycoside Hydrolase Activity. ACS Sustainable Chemistry and Engineering, 2020, 8, 14117-14126.	3.2	30
23	The synergy between LPMOs and cellulases in enzymatic saccharification of cellulose is both enzymeand substrate-dependent. Biotechnology Letters, 2020, 42, 1975-1984.	1.1	63
24	The structural basis of fungal glucuronoyl esterase activity on natural substrates. Nature Communications, 2020, 11, 1026.	5.8	16
25	Selective pressure on an interfacial enzyme: Functional roles of a highly conserved asparagine residue in a cellulase. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2020, 1868, 140359.	1.1	4
26	A steady-state approach for inhibition of heterogeneous enzyme reactions. Biochemical Journal, 2020, 477, 1971-1982.	1.7	5
27	Molecular recognition in the product site of cellobiohydrolase Cel7A regulates processive step length. Biochemical Journal, 2020, 477, 99-110.	1.7	4
28	A biochemical comparison of fungal GH6 cellobiohydrolases. Biochemical Journal, 2019, 476, 2157-2172.	1.7	7
29	A practical approach to steady-state kinetic analysis of cellulases acting on their natural insoluble substrate. Analytical Biochemistry, 2019, 586, 113411.	1.1	11
30	Functional analysis of chimeric TrCel6A enzymes with different carbohydrate binding modules. Protein Engineering, Design and Selection, 2019, 32, 401-409.	1.0	7
31	Systematic deletions in the cellobiohydrolase (CBH) Cel7A from the fungus Trichoderma reesei reveal flexible loops critical for CBH activity. Journal of Biological Chemistry, 2019, 294, 1807-1815.	1.6	40
32	Effect of alginate size, mannuronic/guluronic acid content and pH on particle size, thermodynamics and composition of complexes with 1²-lactoglobulin. Food Hydrocolloids, 2018, 75, 157-163.	5.6	24
33	Thermoactivation of a cellobiohydrolase. Biotechnology and Bioengineering, 2018, 115, 831-838.	1.7	13
34	Michaelis–Menten equation for degradation of insoluble substrate. Mathematical Biosciences, 2018, 296, 93-97.	0.9	36
35	Sabatier Principle for Interfacial (Heterogeneous) Enzyme Catalysis. ACS Catalysis, 2018, 8, 11966-11972.	5.5	116
36	Rateâ€limiting step and substrate accessibility of cellobiohydrolase Cel6A from <i>TrichodermaÂreesei</i> . FEBS Journal, 2018, 285, 4482-4493.	2.2	23

#	Article	IF	Citations
37	Correlation of structure, function and protein dynamics in GH7 cellobiohydrolases from Trichoderma atroviride, T. reesei and T. harzianum. Biotechnology for Biofuels, 2018, 11, 5.	6.2	37
38	Isothermal Titration Calorimetry Study of Brine–Oil–Rock Interactions. Energy & Fuels, 2018, 32, 7338-7346.	2.5	12
39	Exoâ€exo synergy between Cel6A and Cel7A from <i>Hypocrea jecorina</i> : Role of carbohydrate binding module and the endoâ€lytic character of the enzymes. Biotechnology and Bioengineering, 2017, 114, 1639-1647.	1.7	24
40	An Inverse Michaelis–Menten Approach for Interfacial Enzyme Kinetics. ACS Catalysis, 2017, 7, 4904-4914.	5.5	102
41	Anomeric Selectivity and Product Profile of a Processive Cellulase. Biochemistry, 2017, 56, 167-178.	1.2	10
42	Direct kinetic comparison of the two cellobiohydrolases Cel6A and Cel7A from Hypocrea jecorina. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2017, 1865, 1739-1745.	1.1	15
43	A quenched-flow system for measuring heterogeneous enzyme kinetics with sub-second time resolution. Enzyme and Microbial Technology, 2017, 105, 45-50.	1.6	6
44	The influence of different linker modifications on the catalytic activity and cellulose affinity of cellobiohydrolase Cel7A from Hypocrea jecorina. Protein Engineering, Design and Selection, 2017, 30, 495-501.	1.0	19
45	Loop variants of the thermophile <i>Rasamsonia emersonii</i> cel7A with improved activity against cellulose. Biotechnology and Bioengineering, 2017, 114, 53-62.	1.7	21
46	Endo/exoâ€synergism of cellulases increases with substrate conversion. Biotechnology and Bioengineering, 2017, 114, 696-700.	1.7	16
47	Displacement of Drugs From Cyclodextrin Complexes by Bile Salts: AÂSuggestion of an Intestinal Drug-Solubilizing Capacity From an InÂVitro Model. Journal of Pharmaceutical Sciences, 2016, 105, 2640-2647.	1.6	20
48	The effect of 2,2,2-trifluoroethanol on water studied by using third derivatives of Gibbs energy, G. Journal of Molecular Liquids, 2016, 224, 401-407.	2.3	9
49	Inter-domain Synergism Is Required for Efficient Feeding of Cellulose Chain into Active Site of Cellobiohydrolase Cel7A. Journal of Biological Chemistry, 2016, 291, 26013-26023.	1.6	31
50	Mechanism of product inhibition for cellobiohydrolase Cel7A during hydrolysis of insoluble cellulose. Biotechnology and Bioengineering, 2016, 113, 1178-1186.	1.7	16
51	Rate of Threading a Cellulose Chain into the Binding Tunnel of a Cellulase. Journal of Physical Chemistry B, 2016, 120, 5591-5600.	1.2	29
52	Interrelationships between cellulase activity and cellulose particle morphology. Cellulose, 2016, 23, 2349-2361.	2.4	8
53	Effect of cyclodextrin concentration on the oral bioavailability of danazol and cinnarizine in rats. European Journal of Pharmaceutics and Biopharmaceutics, 2016, 101, 9-14.	2.0	32
54	Hydration Differences Explain the Large Variations in the Complexation Thermodynamics of Modified \hat{I}^3 -Cyclodextrins with Bile Salts. Journal of Physical Chemistry B, 2016, 120, 396-405.	1.2	8

#	Article	IF	Citations
55	A heuristic model to quantify the impact of excess cyclodextrin on oral drug absorption from aqueous solution. European Journal of Pharmaceutics and Biopharmaceutics, 2016, 102, 142-151.	2.0	4
56	Thermodynamic investigation of the interaction between cyclodextrins and preservatives â€" Application and verification in a mathematical model to determine the needed preservative surplus in aqueous cyclodextrin formulations. European Journal of Pharmaceutical Sciences, 2016, 87, 22-29.	1.9	8
57	Effects of constituent ions of a phosphonium-based ionic liquid on molecular organization of H ₂ O as probed by 1-propanol: tetrabutylphosphonium and trifluoroacetate ions. Physical Chemistry Chemical Physics, 2015, 17, 22170-22178.	1.3	16
58	Determination of thermodynamic potentials and the aggregation number for micelles with the mass-action model by isothermal titration calorimetry: A case study on bile salts. Journal of Colloid and Interface Science, 2015, 453, 79-89.	5. O	37
59	Probing Substrate Interactions in the Active Tunnel of a Catalytically Deficient Cellobiohydrolase (Cel7). Journal of Biological Chemistry, 2015, 290, 2444-2454.	1.6	36
60	Free Energy Diagram for the Heterogeneous Enzymatic Hydrolysis of Glycosidic Bonds in Cellulose. Journal of Biological Chemistry, 2015, 290, 22203-22211.	1.6	29
61	Temperature Effects on Kinetic Parameters and Substrate Affinity of Cel7A Cellobiohydrolases. Journal of Biological Chemistry, 2015, 290, 22193-22202.	1.6	53
62	Effect of mutations on the thermostability of Aspergillus aculeatus \hat{l}^2 -1,4-galactanase. Computational and Structural Biotechnology Journal, 2015, 13, 256-264.	1.9	14
63	Third derivative thermodynamic quantities of aqueous tetrahydrofuran at 25°C. Journal of Molecular Liquids, 2015, 202, 40-45.	2.3	9
64	Kinetics of Cellobiohydrolase (Cel7A) Variants with Lowered Substrate Affinity. Journal of Biological Chemistry, 2014, 289, 32459-32468.	1.6	58
65	Characterization of BF4â^' in terms of its effect on water by the 1-propanol probing methodology. Journal of Molecular Liquids, 2014, 198, 211-214.	2.3	11
66	A graphene screen-printed carbon electrode for real-time measurements of unoccupied active sites in a cellulase. Analytical Biochemistry, 2014, 447, 162-168.	1.1	19
67	Extending the hydrophobic cavity of \hat{l}^2 -cyclodextrin results in more negative heat capacity changes but reduced binding affinities. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2014, 78, 351-361.	0.9	19
68	Determination of stability constants of tauro- and glyco-conjugated bile salts with the negatively charged sulfobutylether-12-cyclodextrin: comparison of affinity capillary electrophoresis and isothermal titration calorimetry and thermodynamic analysis of the interaction. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2014, 78, 185-194.	0.9	17
69	A study of salt effects on the complexation between î²-cyclodextrins and bile salts based on the Hofmeister series. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2014, 80, 243-251.	0.9	15
70	A pyranose dehydrogenase-based biosensor for kinetic analysis of enzymatic hydrolysis of cellulose by cellulases. Enzyme and Microbial Technology, 2014, 58-59, 68-74.	1.6	19
71	Low thermodynamic but high kinetic stability of an antifreeze protein from <i>Rhagium mordax</i> . Protein Science, 2014, 23, 760-768.	3.1	12
72	Determination of the aggregation number for micelles by isothermal titration calorimetry. Thermochimica Acta, 2014, 588, 28-37.	1.2	23

#	Article	IF	Citations
73	Effects of some salts on H2O as probed by a thermodynamic signature of glycerol: towards understanding the Hofmeister effects (VII). Physical Chemistry Chemical Physics, 2014, 16, 335-344.	1.3	6
74	Reversibility of Substrate Adsorption for the Cellulases Cel7A, Cel6A, and Cel7B from <i>Hypocrea jecorina</i> Langmuir, 2014, 30, 12602-12609.	1.6	21
75	Computational Investigation of Enthalpy–Entropy Compensation in Complexation of Glycoconjugated Bile Salts with β-Cyclodextrin and Analogs. Journal of Physical Chemistry B, 2014, 118, 10889-10897.	1.2	17
76	Interaction of neurotransmitters with a phospholipid bilayer: A molecular dynamics study. Chemistry and Physics of Lipids, 2014, 184, 7-17.	1.5	28
77	Lipophilic Contaminants Influence Cold Tolerance of Invertebrates through Changes in Cell Membrane Fluidity. Environmental Science & Echnology, 2014, 48, 9797-9803.	4.6	28
78	The Role of Product Inhibition as a Yield-Determining Factor in Enzymatic High-Solid Hydrolysis of Pretreated Corn Stover. Applied Biochemistry and Biotechnology, 2014, 174, 146-155.	1.4	21
79	Molecular and component volumes of N,N-dimethyl-N-alkylamine N-oxides in DOPC bilayers. Chemistry and Physics of Lipids, 2014, 180, 1-6.	1.5	4
80	How Much Weaker Are the Effects of Cations than Those of Anions? The Effects of K ⁺ and Cs ⁺ on the Molecular Organization of Liquid H ₂ O. Journal of Physical Chemistry B, 2014, 118, 8744-8749.	1.2	24
81	Complexation Thermodynamics of Modified Cyclodextrins: Extended Cavities and Distorted Structures. Journal of Physical Chemistry B, 2014, 118, 10120-10129.	1.2	19
82	In Situ Stability of Substrate-Associated Cellulases Studied by DSC. Langmuir, 2014, 30, 7134-7142.	1.6	15
83	Thermodynamics of the interaction of \hat{I}^3 -cyclodextrin and tauro- and glyco-conjugated bile salts. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2013, 75, 223-233.	1.6	12
84	A steadyâ€state theory for processive cellulases. FEBS Journal, 2013, 280, 3952-3961.	2.2	50
85	Product inhibition of five Hypocrea jecorina cellulases. Enzyme and Microbial Technology, 2013, 52, 163-169.	1.6	85
86	Binding of Serotonin to Lipid Membranes. Journal of the American Chemical Society, 2013, 135, 2164-2171.	6.6	65
87	A comparative study of hydrolysis and transglycosylation activities of fungal \hat{l}^2 -glucosidases. Applied Microbiology and Biotechnology, 2013, 97, 159-169.	1.7	73
88	Transient Kinetics and Rate-Limiting Steps for the Processive Cellobiohydrolase Cel7A: Effects of Substrate Structure and Carbohydrate Binding Domain. Biochemistry, 2013, 52, 8938-8948.	1.2	73
89	Pre-steady-state Kinetics for Hydrolysis of Insoluble Cellulose by Cellobiohydrolase Cel7A. Journal of Biological Chemistry, 2012, 287, 18451-18458.	1.6	100
90	Effects of Ethanol and Dimethyl Sulfoxide on the Molecular Organization of H ₂ O as Probed by 1-Propanol. Journal of Physical Chemistry B, 2012, 116, 7328-7333.	1.2	17

#	Article	IF	Citations
91	An amperometric enzyme biosensor for realâ€time measurements of cellobiohydrolase activity on insoluble cellulose. Biotechnology and Bioengineering, 2012, 109, 3199-3204.	1.7	40
92	Higher Order Inclusion Complexes and Secondary Interactions Studied by Global Analysis of Calorimetric Titrations. Analytical Chemistry, 2012, 84, 2305-2312.	3.2	27
93	Origin of Initial Burst in Activity for Trichoderma reesei endo-Glucanases Hydrolyzing Insoluble Cellulose. Journal of Biological Chemistry, 2012, 287, 1252-1260.	1.6	53
94	Interaction Free Energies of Eight Sodium Salts and a Phosphatidylcholine Membrane. Journal of Physical Chemistry B, 2011, 115, 9955-9961.	1.2	12
95	Methylated \hat{l}^2 -Cyclodextrins: Influence of Degree and Pattern of Substitution on the Thermodynamics of Complexation with Tauro- and Glyco-Conjugated Bile Salts. Langmuir, 2011, 27, 5832-5841.	1.6	51
96	Affinity of Four Polar Neurotransmitters for Lipid Bilayer Membranes. Journal of Physical Chemistry B, 2011, 115, 196-203.	1.2	40
97	The effect of GlycoPEGylation on the physical stability of human rFVIIa with increasing calcium chloride concentration. European Journal of Pharmaceutics and Biopharmaceutics, 2011, 78, 222-228.	2.0	5
98	Effects of PEG size on structure, function and stability of PEGylated BSA. European Journal of Pharmaceutics and Biopharmaceutics, 2011, 79, 399-405.	2.0	66
99	Is a Methyl Group Always Hydrophobic? Hydrophilicity of Trimethylamine- <i>N</i> VVi>-oxide, Tetramethyl Urea and Tetramethylammonium Ion. Journal of Physical Chemistry B, 2011, 115, 2995-3002.	1.2	44
100	A kinetic model for the burst phase of processive cellulases. FEBS Journal, 2011, 278, 1547-1560.	2.2	86
101	Thermodynamics of complexation of tauro- and glyco-conjugated bile salts with two modified \hat{l}^2 -cyclodextrins. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2011, 69, 201-211.	1.6	23
102	Intermolecular Interactions in Ternary Glycerol–Sample–H2O: Towards Understanding theÂHofmeister Series (V). Journal of Solution Chemistry, 2011, 40, 93-105.	0.6	11
103	Kinetics of Enzymatic High-Solid Hydrolysis of Lignocellulosic Biomass Studied by Calorimetry. Applied Biochemistry and Biotechnology, 2011, 163, 626-635.	1.4	25
104	Xylan oligosaccharides and cellobiohydrolase I (TrCel7A) interaction and effect on activity. Biotechnology for Biofuels, 2011, 4, 45.	6.2	48
105	Complexation of tauro―and glyco onjugated bile salts with α yclodextrin and hydroxypropylâ€Î±â€€yclodextrin studied by affinity capillary electrophoresis and molecular modelling. Journal of Separation Science, 2011, 34, 3221-3230.	1.3	17
106	Advantages of isothermal titration calorimetry for xylanase kinetics in comparison to chemical-reducing-end assays. Analytical Biochemistry, 2011, 410, 19-26.	1.1	25
107	Effects of non-ionic surfactants on the interactions between cellulases and tannic acid: A model system for cellulase–poly-phenol interactions. Enzyme and Microbial Technology, 2011, 49, 353-359.	1.6	34
108	Biophysical characterisation of GlycoPEGylated recombinant human factor VIIa. International Journal of Pharmaceutics, 2011, 406, 62-68.	2.6	27

#	Article	IF	Citations
109	The molar hydrodynamic volume changes of factor VIIa due to GlycoPEGylation. Journal of Pharmaceutical and Biomedical Analysis, 2011, 55, 597-602.	1.4	10
110	Reconciliation of opposing views on membrane–sugar interactions. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 1874-1878.	3.3	126
111	A thermodynamic analysis of fibrillar polymorphism. Biophysical Chemistry, 2010, 149, 40-46.	1.5	31
112	Molecular and component volumes of saturated n-alkanols in DOPC+DOPS bilayers. Chemistry and Physics of Lipids, 2010, 163, 498-505.	1.5	10
113	Experimental Determination of Third Derivative ofÂtheÂGibbs Free Energy, GÂII: Differential Pressure Perturbation Calorimetry. Journal of Solution Chemistry, 2010, 39, 431-440.	0.6	7
114	The role of protonation in protein fibrillation. FEBS Letters, 2010, 584, 780-784.	1.3	26
115	A comparative study of activity and apparent inhibition of fungal βâ€glucosidases. Biotechnology and Bioengineering, 2010, 107, 943-952.	1.7	50
116	Novel investigation of enzymatic biodiesel reaction by isothermal calorimetry. Thermochimica Acta, 2010, 501, 84-90.	1.2	12
117	An enzymatic signal amplification system for calorimetric studies of cellobiohydrolases. Analytical Biochemistry, 2010, 404, 140-148.	1.1	27
118	A calorimetric assay for enzymatic saccharification of biomass. Enzyme and Microbial Technology, 2010, 46, 141-146.	1.6	31
119	Hydroxypropyl-Substituted \hat{I}^2 -Cyclodextrins: Influence of Degree of Substitution on the Thermodynamics of Complexation with Tauroconjugated and Glycoconjugated Bile Salts. Langmuir, 2010, 26, 17949-17957.	1.6	63
120	Cyclomorphosis in Tardigrada: adaptation to environmental constraints. Journal of Experimental Biology, 2009, 212, 2803-2811.	0.8	42
121	A calorimetric study of solute effects on the kinetic stability of α-amylase. Thermochimica Acta, 2009, 484, 32-37.	1.2	3
122	α-Lactalbumin is unfolded by all classes of surfactants but by different mechanisms. Journal of Colloid and Interface Science, 2009, 329, 273-283.	5.0	105
123	Role of electrostatic repulsion on colloidal stability of Bacillus halmapalus alpha-amylase. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2009, 1794, 1058-1065.	1.1	45
124	The Role of Decorated SDS Micelles in Sub-CMC Protein Denaturation and Association. Journal of Molecular Biology, 2009, 391, 207-226.	2.0	130
125	Experimental approaches to membrane thermodynamics. Soft Matter, 2009, 5, 3249.	1.2	7
126	Dual roles of glucose in the freeze-tolerant earthworm <i>Dendrobaena octaedra</i> : cryoprotection and fuel for metabolism. Journal of Experimental Biology, 2009, 212, 859-866.	0.8	44

#	Article	IF	Citations
127	High Temperature End of the So-Called "Koga Line― Anomalies in Temperature Derivatives of Heat Capacities. Journal of Physical Chemistry B, 2009, 113, 5885-5890.	1.2	16
128	Thermodynamics and structure of inclusion compounds of tauro- and glyco-conjugated bile salts and \hat{l}^2 -cyclodextrin. Physical Chemistry Chemical Physics, 2009, 11 , 5070.	1.3	38
129	Effects of Fatty Acid Inclusion in a DMPC Bilayer Membrane. Journal of Physical Chemistry B, 2009, 113, 92-102.	1.2	21
130	Characterization of the complexation of tauro- and glyco-conjugated bile salts with \hat{I}^3 -cyclodextrin and 2-hydroxypropyl- \hat{I}^3 -cyclodextrin using affinity capillary electrophoresis. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2008, 61, 161-169.	1.6	20
131	Influence of Ethanol on Lipid Membranes:  From Lateral Pressure Profiles to Dynamics and Partitioning. Journal of Physical Chemistry B, 2008, 112, 4131-4139.	1.2	94
132	Global Study of Myoglobinâ^'Surfactant Interactions. Langmuir, 2008, 24, 399-407.	1.6	78
133	Experimental determination of the third derivative of G. I. Enthalpic interaction. Journal of Chemical Physics, 2008, 129, 211101.	1.2	3
134	Glucose, sucrose and trehalose are partially excluded from the interface of hydrated DMPC bilayers. Physical Chemistry Chemical Physics, 2008, 10, 4110.	1.3	34
135	Interactions of Na-Salts and 1-Propanol in 1-Propanolâ^'Na-Saltâ^'H ₂ O Systems:  Toward an Understanding the Hofmeister Series (IV). Journal of Physical Chemistry B, 2008, 112, 4680-4686.	1.2	12
136	Thermal Stability of Humicola insolens Cutinase in aqueous SDS. Journal of Physical Chemistry B, 2007, 111, 2941-2947.	1.2	26
137	Relative Hydrophobicity/Hydrophilicity of Fructose, Glucose, Sucrose, and Trehalose as Probed by 1-Propanol:Â A Differential Approach in Solution Thermodynamics. Journal of Physical Chemistry B, 2007, 111, 13943-13948.	1.2	27
138	Unfolding of Î ² -Sheet Proteins in SDS. Biophysical Journal, 2007, 92, 3674-3685.	0.2	116
139	Complexation of tauro―and glyco onjugated bile salts with three neutral βâ€CDs studied by ACE. Electrophoresis, 2007, 28, 3745-3752.	1.3	28
140	Molecular packing in 1-hexanol–DMPC bilayers studied by molecular dynamics simulation. Biophysical Chemistry, 2007, 125, 104-111.	1.5	32
141	Glycoprotein-surfactant interactions: A calorimetric and spectroscopic investigation of the phytase-SDS system. Biophysical Chemistry, 2007, 129, 251-258.	1.5	28
142	Solute effects on the irreversible aggregation of serum albumin. Biophysical Chemistry, 2007, 130, 17-25.	1.5	21
143	Toward Understanding the Hofmeister Series. 3. Effects of Sodium Halides on the Molecular Organization of H2O As Probed by 1-Propanol. Journal of Physical Chemistry A, 2006, 110, 2072-2078.	1.1	54
144	Interrelationships of Glycosylation and Aggregation Kinetics for Peniophora lycii Phytase. Biochemistry, 2006, 45, 5057-5066.	1.2	39

#	Article	IF	Citations
145	The effect of calcium on the properties of charged phospholipid bilayers. Biochimica Et Biophysica Acta - Biomembranes, 2006, 1758, 573-582.	1.4	123
146	The Effects of Chloride Salts of Some Cations on the Molecular Organization of H2O. Towards Understanding the Hofmeister Series. II. Bulletin of the Chemical Society of Japan, 2006, 79, 1347-1354.	2.0	25
147	Packing properties of 1-alkanols and alkanes in a phospholipid membrane. Biophysical Chemistry, 2006, 119, 61-68.	1.5	53
148	Proton exchange coupled to the specific binding of alkylsulfonates to serum albumins. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2006, 1764, 1243-1251.	1.1	8
149	Hydration of a glycoprotein: relative water affinity of peptide and glycan moieties. European Biophysics Journal, 2006, 35, 367-371.	1.2	17
150	Interactions of Humicola insolens Cutinase with an Anionic Surfactant Studied by Small-Angle Neutron Scattering and Isothermal Titration Calorimetry. Langmuir, 2005, 21, 4299-4307.	1.6	33
151	Analysis of protein–surfactant interactions—a titration calorimetric and fluorescence spectroscopic investigation of interactions between Humicola insolens cutinase and an anionic surfactant. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2005, 1752, 124-132.	1.1	79
152	Thermodynamic properties of water in the water-poor region of binary water + alcohol mixtures. Canadian Journal of Chemistry, 2005, 83, 420-429.	0.6	24
153	Effect of an "lonic Liquid―Cation, 1-Butyl-3-methylimidazolium, on the Molecular Organization of H2O. Journal of Physical Chemistry B, 2005, 109, 9014-9019.	1.2	133
154	Hydrophobicity vs Hydrophilicity:Â Effects of Poly(ethylene glycol) andtert-Butyl Alcohol on H2O as Probed by 1-Propanol. Journal of Physical Chemistry B, 2005, 109, 19536-19541.	1.2	29
155	Metabolic activity and water vapour absorption in the mealworm Tenebrio molitor L. (Coleoptera,) Tj ETQq1 1 0.70 Biology, 2004, 207, 545-552.	84314 rgl 0.8	
156	Effects of Na2SO4 and NaClO4 on the Molecular Organization of H2O. Journal of Physical Chemistry A, 2004, 108, 1635-1637.	1.1	18
157	Toward Understanding the Hofmeister Series. 1. Effects of Sodium Salts of Some Anions on the Molecular Organization of H2O. Journal of Physical Chemistry A, 2004, 108, 8533-8541.	1.1	36
158	Mixing Schemes in Ionic Liquidâ^'H2O Systems:Â A Thermodynamic Study. Journal of Physical Chemistry B, 2004, 108, 19451-19457.	1.2	191
159	"lcebergs―or No "lcebergs―in Aqueous Alcohols?:  Composition-Dependent Mixing Schemes. Journ Physical Chemistry A, 2004, 108, 3873-3877.	al of 1.1	71
160	Preferential interaction of dimethyl sulfoxide and phosphatidyl choline membranes. Biochimica Et Biophysica Acta - Biomembranes, 2004, 1664, 217-223.	1.4	27
161	A proposed mechanism for the thermal denaturation of a recombinant Bacillus halmapalus α-amylaseâ€"the effect of calcium ions. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2003, 1652, 52-63.	1.1	41
162	Isothermal titration calorimetric procedure to determine protein–metal ion binding parameters in the presence of excess metal ion or chelator. Analytical Biochemistry, 2003, 314, 227-234.	1.1	30

#	Article	IF	Citations
163	Solvent accessible surface area (ASA) of simulated phospholipid membranes. Chemistry and Physics of Lipids, 2003, 123, 107-116.	1.5	13
164	Chemical potential and concentration fluctuation in some aqueous alkane-mono-ols at 25oC. Canadian Journal of Chemistry, 2003, 81, 141-149.	0.6	46
165	Preferential Binding of Two Compatible Solutes to the Glycan Moieties ofPeniophora lyciiPhytaseâ€. Biochemistry, 2003, 42, 10295-10300.	1.2	15
166	Unilamellar DMPC Vesicles in Aqueous Glycerol: Preferential Interactions and Thermochemistry. Biophysical Journal, 2003, 84, 341-349.	0.2	52
167	Effect of calcium ions on the irreversible denaturation of a recombinant Bacillus halmapalus alpha-amylase: a calorimetric investigation. Biochemical Journal, 2003, 373, 337-343.	1.7	32
168	Excess partial molar entropy of alkane-mono-ols in aqueous solutions at $25 \hat{A}^{\circ}\text{C}$. Canadian Journal of Chemistry, 2003, 81, 150-155.	0.6	19
169	A differential vapor-pressure equipment for investigations of biopolymer interactions. Journal of Proteomics, 2002, 50, 269-288.	2.4	10
170	Additive Effect of 1-Propanol and 2-Propanol on Molecular Organization of H2O in the Water-Rich Region: Excess Chemical Potential, Partial Molar Enthalpy and Volume of 1-Propanol in 1-Propanol–2-Propanol–H2O at 25 °C. Bulletin of the Chemical Society of Japan, 2001, 74, 809-816.	2.0	27
171	Binding of small alcohols to a lipid bilayer membrane: does the partitioning coefficient express the net affinity?. Biophysical Chemistry, 2001, 89, 53-63.	1.5	24
172	Title is missing!. Journal of Solution Chemistry, 2001, 30, 1007-1028.	0.6	68
173	Cryptobiosis in the Eutardigrade Adorybiotus (Richtersius) coronifer: Tolerance to Alcohols, Temperature and de novo Protein Synthesis. Zoologischer Anzeiger, 2001, 240, 517-523.	0.4	92
174	Interactions in d-fructose–1-propanol–H2O: the effect of d-fructose on the molecular organization of liquid H2O. Fluid Phase Equilibria, 2000, 171, 151-164.	1.4	15
175	Thermochemistry of the specific binding of C12 surfactants to bovine serum albumin. BBA - Proteins and Proteomics, 2000, 1479, 321-331.	2.1	127
176	A Thermodynamic Study of the Effects of Cholesterol on the Interaction between Liposomes and Ethanol. Biophysical Journal, 2000, 78, 2486-2492.	0.2	79
177	A thermodynamic study of aqueous acetonitrile: excess chemical potentials, partial molar enthalpies, entropies and volumes, and fluctuations. Canadian Journal of Chemistry, 2000, 78, 1553-1560.	0.6	21
178	Partitioning of Small Alcohols into Dimyristoyl Phosphatidylcholine (DMPC) Membranes:Â Volumetric Properties. Journal of Physical Chemistry B, 2000, 104, 11334-11341.	1.2	16
179	Mixing scheme of aqueous butan-1-ol in the water-rich region at $25 \hat{A}^{\circ}$ C: Excess chemical potential, partial molar enthalpy, entropy and volume, heat capacity compressibility and thermal expansivity. Physical Chemistry Chemical Physics, 2000, 2, 355-359.	1.3	24
180	Use of isothermal titration calorimetry to study the interaction of short-chain alcohols with lipid membranes. Thermochimica Acta, 1999, 328, 129-135.	1.2	18

#	Article	IF	Citations
181	Title is missing!. Journal of Solution Chemistry, 1999, 28, 1137-1157.	0.6	69
182	A Calorimetric Investigation of the Interaction of Short Chain Alcohols with Unilamellar DMPC Liposomes. Journal of Physical Chemistry B, 1999, 103, 4751-4756.	1.2	25
183	Association of ethanol with lipid membranes containing cholesterol, sphingomyelin and ganglioside: a titration calorimetry study. Biochimica Et Biophysica Acta - Biomembranes, 1999, 1420, 179-188.	1.4	41
184	Thermodynamics of alcohol–lipid bilayer interactions: application of a binding model. Biochimica Et Biophysica Acta - Biomembranes, 1999, 1421, 261-272.	1.4	30
185	Intermolecular Interactions intert-Butyl Alcoholâ^'Dimethyl Sulfoxideâ^'H2O:Â Chemical Potentials, Partial Molar Entropies and Volumes. Journal of Physical Chemistry B, 1998, 102, 5182-5195.	1.2	24
186	Intermolecular Interactions of Lysozyme and Small Alcohols:Â A Calorimetric Investigation. Journal of Physical Chemistry B, 1997, 101, 5755-5758.	1.2	35
187	`Intermolecular interactions' in aqueous solutions of three components including lysozyme. Fluid Phase Equilibria, 1997, 136, 207-221.	1.4	9
188	Excess partial molar enthalpies of alkane-mono-ols in aqueous solutions. Canadian Journal of Chemistry, 1996, 74, 713-721.	0.6	66
189	Intermolecular Interactions in 2-Butoxyethanolâ°'DMSOâ°'H2Oâ€. The Journal of Physical Chemistry, 1996, 100, 433-438.	2.9	23
190	Normalized fluctuations, H2O vs nâ€hexane: Siteâ€correlated percolation. Journal of Chemical Physics, 1996, 105, 2028-2033.	1.2	24
191	Excess partial molar enthalpies, entropies, Gibbs energies, and volumes in aqueous dimethylsulfoxide. Journal of Solution Chemistry, 1995, 24, 89-102.	0.6	96
192	Transition of the mixing scheme in the water-rich region of aqueous 2-butoxyethanol: heat capacities and their temperature derivatives. Chemical Physics Letters, 1994, 217, 245-248.	1.2	21
193	Mixing Schemes and Liquid–Solid Phase Diagram in the Water-Rich Region of Aqueous 2-Butoxyethanol. Bulletin of the Chemical Society of Japan, 1994, 67, 2393-2397.	2.0	17
194	Survival of the cryptobiotic eutardigrade Adorybiotus coronifer during cooling to â^'196 °C: Effect of cooling rate, trehalose level, and short-term acclimation. Cryobiology, 1992, 29, 125-130.	0.3	76