
Alexander Rapoport

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5355876/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Correlation of Statistical Distributions of the Dimension of Yeast Cells Attached to the Substrate and Its Surface Electrical Potential. Materials, 2022, 15, 6.	2.9	Ο
2	Identification, Quantification and Kinetic Study of Carotenoids and Lipids in Rhodotorula toruloides CBS 14 Cultivated on Wheat Straw Hydrolysate. Fermentation, 2022, 8, 300.	3.0	16
3	Carotenoids and Some Other Pigments from Fungi and Yeasts. Metabolites, 2021, 11, 92.	2.9	53
4	Changes in Energy Status of Saccharomyces cerevisiae Cells during Dehydration and Rehydration. Microorganisms, 2021, 9, 444.	3.6	2
5	Catalytic treatment of rapeseed straw for enhanced production of furfural and glucose for bioethanol production. Process Biochemistry, 2021, 102, 102-107.	3.7	9
6	A Crucial Role of Mitochondrial Dynamics in Dehydration Resistance in Saccharomyces cerevisiae. International Journal of Molecular Sciences, 2021, 22, 4607.	4.1	5
7	Anhydrobiosis in yeast: role of cortical endoplasmic reticulum protein Ist2 in Saccharomyces cerevisiae cells during dehydration and subsequent rehydration. Antonie Van Leeuwenhoek, 2021, 114, 1069-1077.	1.7	2
8	Astrobiology of life on Earth. Environmental Microbiology, 2021, 23, 3335-3344.	3.8	16
9	Effect of Pretreated Colza Straw on the Growth and Extracellular Ligninolytic Enzymes Production by Lentinula edodes and Ganoderma lucidum. Fermentation, 2021, 7, 157.	3.0	2
10	Microbial lag phase can be indicative of, or independent from, cellular stress. Scientific Reports, 2020, 10, 5948.	3.3	59
11	Engineering of sugar transporters for improvement of xylose utilization during high-temperature alcoholic fermentation in Ogataea polymorpha yeast. Microbial Cell Factories, 2020, 19, 96.	4.0	19
12	Experimental Setup with Chaotic and Periodic Excitations for Cell Growth Studies. , 2020, , .		0
13	Anhydrobiosis in yeasts: Glutathione synthesis by yeast Ogataea (Hansenula) polymorpha cells after their dehydration-rehydration. Journal of Biotechnology, 2019, 304, 28-30.	3.8	3
14	Anhydrobiosis in yeasts: Psychrotolerant yeasts are highly resistant to dehydration. Yeast, 2019, 36, 375-379.	1.7	9
15	Anhydrobiosis in Yeasts: Changes in Mitochondrial Membranes Improve the Resistance of Saccharomyces cerevisiae Cells to Dehydration–Rehydration. Fermentation, 2019, 5, 82.	3.0	4
16	Anhydrobiosis: Inside yeast cells. Biotechnology Advances, 2019, 37, 51-67.	11.7	39
17	Anhydrobiosis in Non-conventional Yeasts. , 2019, , 341-359.		3
18	Activity of the α-glucoside transporter Agt1 in Saccharomyces cerevisiae cells during dehydration-rehydration events. Fungal Biology, 2018, 122, 613-620.	2.5	8

#	Article	IF	CITATIONS
19	Anhydrobiosis in yeast: Glutathione overproduction improves resistance to dehydration of a recombinant Ogataea (Hansenula) polymorpha strain. Process Biochemistry, 2018, 71, 41-44.	3.7	9
20	Bioethanol and lipid production from the enzymatic hydrolysate of wheat straw after furfural extraction. Applied Microbiology and Biotechnology, 2018, 102, 6269-6277.	3.6	46
21	Effect of Lignin-Containing Media on Growth of Medicinal Mushroom Lentinula Edodes. Proceedings of the Latvian Academy of Sciences, 2017, 71, 38-42.	0.1	3
22	Anhydrobiosis and Dehydration of Yeasts. , 2017, , 87-116.		13
23	Anhydrobiosis in yeast: cell wall mannoproteins are important for yeast <i>Saccharomyces cerevisiae</i> resistance to dehydration. Yeast, 2016, 33, 347-353.	1.7	25
24	Application of anhydrobiosis and dehydration of yeasts for non-conventional biotechnological goals. World Journal of Microbiology and Biotechnology, 2016, 32, 104.	3.6	22
25	The role of glycerol transporters in yeast cells in various physiological and stress conditions. FEMS Microbiology Letters, 2015, 362, 1-8.	1.8	34
26	Drying enhances immunoactivity of spent brewer's yeast cell wall β-d-glucans. Journal of Biotechnology, 2015, 206, 12-16.	3.8	32
27	New Test-system Based on the Evaluation of Yeast Cells Resistance to Dehydration-rehydration Stress. Open Biotechnology Journal, 2015, 9, 49-53.	1.2	4
28	Biotechnological and environmental microbiological research in the Baltic region. Biotechnology and Applied Biochemistry, 2014, 61, 1-2.	3.1	0
29	Anhydrobiosis in yeast: FTâ€IR spectroscopic studies of yeast grown under conditions of severe oxygen limitation. Biotechnology and Applied Biochemistry, 2014, 61, 474-479.	3.1	5
30	Effects of yeast immobilization on bioethanol production. Biotechnology and Applied Biochemistry, 2014, 61, 33-39.	3.1	28
31	Potassium uptake system Trk2 is crucial for yeast cell viability during anhydrobiosis. FEMS Microbiology Letters, 2014, 350, 28-33.	1.8	21
32	Anhydrobiosis in yeast: is it possible to reach anhydrobiosis for yeast grown in conditions with severe oxygen limitation?. Antonie Van Leeuwenhoek, 2014, 106, 211-217.	1.7	10
33	Survival kit of Saccharomyces cerevisiae for anhydrobiosis. Applied Microbiology and Biotechnology, 2014, 98, 8821-8834.	3.6	78
34	Thermotolerance in Saccharomyces cerevisiae is linked to resistance to anhydrobiosis. Process Biochemistry, 2014, 49, 1889-1892.	3.7	11
35	Immobilisation increases yeast cells' resistance to dehydration–rehydration treatment. Journal of Biotechnology, 2014, 184, 169-171.	3.8	11
36	Immobilisation of yeast cells on the surface of hydroxyapatite ceramics. Process Biochemistry, 2011, 46, 665-670.	3.7	36

Alexander Rapoport

#	Article	IF	CITATIONS
37	Anhydrobiosis in yeast: influence of calcium and magnesium ions on yeast resistance to dehydration-rehydration. FEMS Microbiology Letters, 2010, 308, 55-61.	1.8	47
38	Resistance of a recombinant <i>Escherichia coli</i> to dehydration. Cell Biology International, 2009, 33, 1194-1195.	3.0	1
39	Dehydration of yeast: Changes in the intracellular content of Hsp70 family proteins. Process Biochemistry, 2008, 43, 1138-1141.	3.7	23
40	Cr(VI) sorption by intact and dehydrated Candida utilis cells in the presence of other metals. Process Biochemistry, 2002, 38, 123-131.	3.7	35
41	Interrelations of the yeast Candida utilis and Cr(VI): metal reduction and its distribution in the cell and medium. Process Biochemistry, 2001, 36, 963-970.	3.7	70
42	Exponential growth phase cells of the osmotolerant yeast Debaryomyces hansenii are extremely resistant to dehydration stress. Process Biochemistry, 2001, 36, 1163-1166.	3.7	22
43	Cr(VI) sorption by intact and dehydrated Candida utilis cells: differences in mechanisms. Process Biochemistry, 2001, 37, 505-511.	3.7	16