Paolo Tammaro

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5355326/publications.pdf

Version: 2024-02-01

623188 580395 25 26 785 14 citations g-index h-index papers 28 28 28 931 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Polymodal Control of TMEM16x Channels and Scramblases. International Journal of Molecular Sciences, 2022, 23, 1580.	1.8	8
2	The Ca2+-gated channel TMEM16A amplifies capillary pericyte contraction and reduces cerebral blood flow after ischemia. Journal of Clinical Investigation, 2022, 132, .	3.9	46
3	The pharmacology of the TMEM16A channel: therapeutic opportunities. Trends in Pharmacological Sciences, 2022, 43, 712-725.	4.0	11
4	Ion channels as convergence points in the pathology of pulmonary arterial hypertension. Biochemical Society Transactions, 2021, 49, 1855-1865.	1.6	7
5	An outer-pore gate modulates the pharmacology of the TMEM $16A$ channel. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118 , .	3.3	15
6	The structural basis of lipid scrambling and inactivation in the endoplasmic reticulum scramblase TMEM16K. Nature Communications, 2019, 10, 3956.	5.8	101
7	Defining the ionic mechanisms of optogenetic control of vascular tone by channelrhodopsinâ€2. British Journal of Pharmacology, 2018, 175, 2028-2045.	2.7	12
8	Contrasting effects of phosphatidylinositol 4,5â€bisphosphate on cloned TMEM16A and TMEM16B channels. British Journal of Pharmacology, 2017, 174, 2984-2999.	2.7	50
9	Mechanism of allosteric activation of <scp>TMEM16A/ANO1</scp> channels by a commonly used chloride channel blocker. British Journal of Pharmacology, 2016, 173, 511-528.	2.7	19
10	Disease-causing mutations associated with four bestrophinopathies exhibit disparate effects on the localization, but not the oligomerization, of Bestrophin-1. Experimental Eye Research, 2014, 121, 74-85.	1.2	34
11	Putative poreâ€loops of TMEM16/anoctamin channels affect channel density in cell membranes. Journal of Physiology, 2013, 591, 3487-3505.	1.3	39
12	Coronary spasm and acute myocardial infarction due to a mutation (V734I) in the nucleotide binding domain 1 of ABCC9. International Journal of Cardiology, 2013, 168, 3506-3513.	0.8	24
13	Parametrisation of the free energy of ATP binding to wild-type and mutant Kir6.2 potassium channels. Biophysical Chemistry, 2013, 171, 76-83.	1.5	2
14	Autosomal Dominant Hypercalciuria in a Mouse Model Due to a Mutation of the Epithelial Calcium Channel, TRPV5. PLoS ONE, 2013, 8, e55412.	1,1	35
15	TMEM16A/Anoctamin 1 protein mediates calciumâ€activated chloride currents in pulmonary arterial smooth muscle cells. Journal of Physiology, 2010, 588, 2305-2314.	1.3	149
16	A cytosolic factor that inhibits K _{ATP} channels expressed in <i>Xenopus</i> oocytes by impairing Mgâ€nucleotide activation by SUR1. Journal of Physiology, 2009, 587, 1649-1656.	1.3	2
17	Vascular K _{ATP} channels: dephosphorylation and deactivation. British Journal of Pharmacology, 2009, 157, 551-553.	2.7	3
18	Xenopus Oocytes as a Heterologous Expression System for Studying Ion Channels with the Patch-Clamp Technique. Methods in Molecular Biology, 2008, 491, 127-139.	0.4	18

#	Article	IF	CITATION
19	Neonatal Diabetes. , 2007, 11, 70-82.		2
20	The Kir6.2-F333I mutation differentially modulates KATPchannels composed of SUR1 or SUR2 subunits. Journal of Physiology, 2007, 581, 1259-1269.	1.3	7
21	A mutation in the ATPâ€binding site of the Kir6.2 subunit of the K _{ATP} channel alters coupling with the SUR2A subunit. Journal of Physiology, 2007, 584, 743-753.	1.3	8
22	Functional effects of naturally occurring KCNJ11 mutations causing neonatal diabetes on cloned cardiac KATP channels. Journal of Physiology, 2006, 571, 3-14.	1.3	32
23	Kir6.2 mutations causing neonatal diabetes provide new insights into Kir6.2–SUR1 interactions. EMBO Journal, 2005, 24, 2318-2330.	3.5	63
24	Effects of intracellular magnesium on Kv1.5 and Kv2.1 potassium channels. European Biophysics Journal, 2005, 34, 42-51.	1.2	13
25	Modulation of the voltage-dependent K current by intracellular Mg in rat aortic smooth muscle cells. Cardiovascular Research, 2005, 65, 387-396.	1.8	24
26	Pharmacological evidence for a key role of voltage-gated K+ channels in the function of rat aortic smooth muscle cells. British Journal of Pharmacology, 2004, 143, 303-317.	2.7	47