
Danielle Bassett

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5355130/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Network neuroscience. Nature Neuroscience, 2017, 20, 353-364.	7.1	1,679
2	Dynamic reconfiguration of human brain networks during learning. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 7641-7646.	3.3	1,399
3	Intrinsic and Task-Evoked Network Architectures of the Human Brain. Neuron, 2014, 83, 238-251.	3.8	1,369
4	Functional Connectivity and Brain Networks in Schizophrenia. Journal of Neuroscience, 2010, 30, 9477-9487.	1.7	1,214
5	Hierarchical Organization of Human Cortical Networks in Health and Schizophrenia. Journal of Neuroscience, 2008, 28, 9239-9248.	1.7	1,138
6	Brain Graphs: Graphical Models of the Human Brain Connectome. Annual Review of Clinical Psychology, 2011, 7, 113-140.	6.3	943
7	Benchmarking of participant-level confound regression strategies for the control of motion artifact in studies of functional connectivity. NeuroImage, 2017, 154, 174-187.	2.1	842
8	Adaptive reconfiguration of fractal small-world human brain functional networks. Proceedings of the United States of America, 2006, 103, 19518-19523.	3.3	763
9	Human brain networks in health and disease. Current Opinion in Neurology, 2009, 22, 340-347.	1.8	763
10	Dynamic reconfiguration of frontal brain networks during executive cognition in humans. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 11678-11683.	3.3	651
11	Controllability of structural brain networks. Nature Communications, 2015, 6, 8414.	5.8	600
12	Small-World Brain Networks Revisited. Neuroscientist, 2017, 23, 499-516.	2.6	535
13	Know Your Place: Neural Processing of Social Hierarchy in Humans. Neuron, 2008, 58, 273-283.	3.8	516
14	Learning-induced autonomy of sensorimotor systems. Nature Neuroscience, 2015, 18, 744-751.	7.1	507
15	Structural foundations of resting-state and task-based functional connectivity in the human brain. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 6169-6174.	3.3	492
16	Multi-scale brain networks. NeuroImage, 2017, 160, 73-83.	2.1	445
17	Activity flow over resting-state networks shapes cognitive task activations. Nature Neuroscience, 2016, 19, 1718-1726.	7.1	403
18	Robust detection of dynamic community structure in networks. Chaos, 2013, 23, 013142.	1.0	400

#	Article	IF	CITATIONS
19	Understanding complexity in the human brain. Trends in Cognitive Sciences, 2011, 15, 200-209.	4.0	393
20	Cognitive fitness of cost-efficient brain functional networks. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 11747-11752.	3.3	385
21	Altered resting state complexity in schizophrenia. NeuroImage, 2012, 59, 2196-2207.	2.1	369
22	Questions and controversies in the study of time-varying functional connectivity in resting fMRI. Network Neuroscience, 2020, 4, 30-69.	1.4	364
23	A validated network of effective amygdala connectivity. NeuroImage, 2007, 36, 736-745.	2.1	360
24	Cognitive Network Neuroscience. Journal of Cognitive Neuroscience, 2015, 27, 1471-1491.	1.1	343
25	Efficient Physical Embedding of Topologically Complex Information Processing Networks in Brains and Computer Circuits. PLoS Computational Biology, 2010, 6, e1000748.	1.5	340
26	Conserved and variable architecture of human white matter connectivity. NeuroImage, 2011, 54, 1262-1279.	2.1	328
27	The extent and drivers of gender imbalance in neuroscience reference lists. Nature Neuroscience, 2020, 23, 918-926.	7.1	327
28	Linked dimensions of psychopathology and connectivity in functional brain networks. Nature Communications, 2018, 9, 3003.	5.8	323
29	Modular Segregation of Structural Brain Networks Supports the Development of Executive Function in Youth. Current Biology, 2017, 27, 1561-1572.e8.	1.8	305
30	Task-Based Core-Periphery Organization of Human Brain Dynamics. PLoS Computational Biology, 2013, 9, e1003171.	1.5	302
31	Development of structure–function coupling in human brain networks during youth. Proceedings of the United States of America, 2020, 117, 771-778.	3.3	296
32	Emergence of system roles in normative neurodevelopment. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 13681-13686.	3.3	292
33	Two's company, three (or more) is a simplex. Journal of Computational Neuroscience, 2016, 41, 1-14.	0.6	279
34	On the nature and use of models in network neuroscience. Nature Reviews Neuroscience, 2018, 19, 566-578.	4.9	277
35	Genetic Influences on Cost-Efficient Organization of Human Cortical Functional Networks. Journal of Neuroscience, 2011, 31, 3261-3270.	1.7	273
36	Neurodevelopment of the association cortices: Patterns, mechanisms, and implications for psychopathology. Neuron, 2021, 109, 2820-2846.	3.8	272

#	Article	IF	CITATIONS
37	Stimulation-Based Control of Dynamic Brain Networks. PLoS Computational Biology, 2016, 12, e1005076.	1.5	234
38	Differential Recruitment of the Sensorimotor Putamen and Frontoparietal Cortex during Motor Chunking in Humans. Neuron, 2012, 74, 936-946.	3.8	233
39	Small-World Propensity and Weighted Brain Networks. Scientific Reports, 2016, 6, 22057.	1.6	233
40	The physics of brain network structure, function and control. Nature Reviews Physics, 2019, 1, 318-332.	11.9	233
41	Cliques and cavities in the human connectome. Journal of Computational Neuroscience, 2018, 44, 115-145.	0.6	215
42	Reproducibility of graph metrics of human brain functional networks. NeuroImage, 2009, 47, 1460-1468.	2.1	214
43	Mitigating head motion artifact in functional connectivity MRI. Nature Protocols, 2018, 13, 2801-2826.	5.5	211
44	Common and Dissociable Dysfunction of the Reward System in Bipolar and Unipolar Depression. Neuropsychopharmacology, 2015, 40, 2258-2268.	2.8	210
45	Environmental influences on the pace of brain development. Nature Reviews Neuroscience, 2021, 22, 372-384.	4.9	201
46	Optimally controlling the human connectome: the role of network topology. Scientific Reports, 2016, 6, 30770.	1.6	190
47	A mechanistic model of connector hubs, modularity and cognition. Nature Human Behaviour, 2018, 2, 765-777.	6.2	187
48	Spread of α-synuclein pathology through the brain connectome is modulated by selective vulnerability and predicted by network analysis. Nature Neuroscience, 2019, 22, 1248-1257.	7.1	187
49	Virtual Cortical Resection Reveals Push-Pull Network Control Preceding Seizure Evolution. Neuron, 2016, 91, 1170-1182.	3.8	185
50	A Graph Signal Processing Perspective on Functional Brain Imaging. Proceedings of the IEEE, 2018, 106, 868-885.	16.4	172
51	Specificity and robustness of long-distance connections in weighted, interareal connectomes. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E4880-E4889.	3.3	171
52	Finding the needle in a high-dimensional haystack: Canonical correlation analysis for neuroscientists. Neurolmage, 2020, 216, 116745.	2.1	163
53	Individual Variation in Functional Topography of Association Networks in Youth. Neuron, 2020, 106, 340-353.e8.	3.8	162
54	Dynamic brain network reconfiguration as a potential schizophrenia genetic risk mechanism modulated by NMDA receptor function. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 12568-12573.	3.3	161

#	Article	IF	CITATIONS
55	Functional Network Dynamics of the Language System. Cerebral Cortex, 2016, 26, 4148-4159.	1.6	155
56	Dynamic Network Drivers of Seizure Generation, Propagation and Termination in Human Neocortical Epilepsy. PLoS Computational Biology, 2015, 11, e1004608.	1.5	148
57	Common Dimensional Reward Deficits Across Mood and Psychotic Disorders: A Connectome-Wide Association Study. American Journal of Psychiatry, 2017, 174, 657-666.	4.0	147
58	From Maps to Multi-dimensional Network Mechanisms of Mental Disorders. Neuron, 2018, 97, 14-31.	3.8	146
59	Detection of functional brain network reconfiguration during task-driven cognitive states. NeuroImage, 2016, 142, 198-210.	2.1	145
60	Optimal trajectories of brain state transitions. NeuroImage, 2017, 148, 305-317.	2.1	143
61	Developmental increases in white matter network controllability support a growing diversity of brain dynamics. Nature Communications, 2017, 8, 1252.	5.8	140
62	Positive affect, surprise, and fatigue are correlates of network flexibility. Scientific Reports, 2017, 7, 520.	1.6	140
63	Functional alignment with anatomical networks is associated with cognitive flexibility. Nature Human Behaviour, 2018, 2, 156-164.	6.2	140
64	Local Patterns to Global Architectures: Influences of Network Topology on Human Learning. Trends in Cognitive Sciences, 2016, 20, 629-640.	4.0	138
65	A Functional Cartography of Cognitive Systems. PLoS Computational Biology, 2015, 11, e1004533.	1.5	137
66	The modular organization of human anatomical brain networks: Accounting for the cost of wiring. Network Neuroscience, 2017, 1, 42-68.	1.4	136
67	Dynamic network structure of interhemispheric coordination. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 18661-18668.	3.3	134
68	Memory Sequencing Reveals Heritable Single-Cell Gene Expression Programs Associated with Distinct Cellular Behaviors. Cell, 2020, 182, 947-959.e17.	13.5	132
69	Dynamic reconfiguration of functional brain networks during working memory training. Nature Communications, 2020, 11, 2435.	5.8	130
70	QSIPrep: an integrative platform for preprocessing and reconstructing diffusion MRI data. Nature Methods, 2021, 18, 775-778.	9.0	127
71	Generic aspects of complexity in brain imaging data and other biological systems. NeuroImage, 2009, 47, 1125-1134.	2.1	126
72	Fractal connectivity of long-memory networks. Physical Review E, 2008, 77, 036104.	0.8	124

#	Article	IF	CITATIONS
73	Graph Frequency Analysis of Brain Signals. IEEE Journal on Selected Topics in Signal Processing, 2016, 10, 1189-1203.	7.3	124
74	Diversity of meso-scale architecture in human and non-human connectomes. Nature Communications, 2018, 9, 346.	5.8	124
75	The importance of the whole: Topological data analysis for the network neuroscientist. Network Neuroscience, 2019, 3, 656-673.	1.4	122
76	Brain connectivity dynamics during social interaction reflect social network structure. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 5153-5158.	3.3	121
77	Brain Network Adaptability across Task States. PLoS Computational Biology, 2015, 11, e1004029.	1.5	120
78	Dynamic graph metrics: Tutorial, toolbox, and tale. NeuroImage, 2018, 180, 417-427.	2.1	120
79	The Role of Intrinsic Brain Functional Connectivity in Vulnerability and Resilience to Bipolar Disorder. American Journal of Psychiatry, 2017, 174, 1214-1222.	4.0	114
80	Network analysis of particles and grains. Journal of Complex Networks, 2018, 6, 485-565.	1.1	113
81	<i>Colloquium</i> : Control of dynamics in brain networks. Reviews of Modern Physics, 2018, 90, .	16.4	111
82	The Why, How, and When of Representations for Complex Systems. SIAM Review, 2021, 63, 435-485.	4.2	111
83	Connectome-wide network analysis of youth with Psychosis-Spectrum symptoms. Molecular Psychiatry, 2015, 20, 1508-1515.	4.1	110
84	Network and Multilayer Network Approaches to Understanding Human Brain Dynamics. Philosophy of Science, 2016, 83, 710-720.	0.5	106
85	Detecting hierarchical genome folding with network modularity. Nature Methods, 2018, 15, 119-122.	9.0	106
86	Gender bias in academia: A lifetime problem that needs solutions. Neuron, 2021, 109, 2047-2074.	3.8	106
87	White Matter Network Architecture Guides Direct Electrical Stimulation through Optimal State Transitions. Cell Reports, 2019, 28, 2554-2566.e7.	2.9	104
88	Motion artifact in studies of functional connectivity: Characteristics and mitigation strategies. Human Brain Mapping, 2019, 40, 2033-2051.	1.9	104
89	The impact of in-scanner head motion on structural connectivity derived from diffusion MRI. NeuroImage, 2018, 173, 275-286.	2.1	102
90	Modeling and interpreting mesoscale network dynamics. NeuroImage, 2018, 180, 337-349.	2.1	101

#	Article	IF	CITATIONS
91	Influence of network topology on sound propagation in granular materials. Physical Review E, 2012, 86, 041306.	0.8	100
92	Multimodal network dynamics underpinning working memory. Nature Communications, 2020, 11, 3035.	5.8	100
93	Extraction of force-chain network architecture in granular materials using community detection. Soft Matter, 2015, 11, 2731-2744.	1.2	98
94	Role of graph architecture in controlling dynamical networks with applications to neural systems. Nature Physics, 2018, 14, 91-98.	6.5	96
95	Brain and cognitive reserve: Translation via network control theory. Neuroscience and Biobehavioral Reviews, 2017, 75, 53-64.	2.9	95
96	Applications of Community Detection Techniques to Brain Graphs: Algorithmic Considerations and Implications for Neural Function. Proceedings of the IEEE, 2018, 106, 846-867.	16.4	94
97	Structural, geometric and genetic factors predict interregional brain connectivity patterns probed by electrocorticography. Nature Biomedical Engineering, 2019, 3, 902-916.	11.6	94
98	Virtual resection predicts surgical outcome for drug-resistant epilepsy. Brain, 2019, 142, 3892-3905.	3.7	93
99	Choosing Wavelet Methods, Filters, and Lengths for Functional Brain Network Construction. PLoS ONE, 2016, 11, e0157243.	1.1	92
100	Evolution of brain network dynamics in neurodevelopment. Network Neuroscience, 2017, 1, 14-30.	1.4	90
101	Generative models for network neuroscience: prospects and promise. Journal of the Royal Society Interface, 2017, 14, 20170623.	1.5	89
102	Glucocerebrosidase Activity Modulates Neuronal Susceptibility to Pathological α-Synuclein Insult. Neuron, 2020, 105, 822-836.e7.	3.8	89
103	Temporal sequences of brain activity at rest are constrained by white matter structure and modulated by cognitive demands. Communications Biology, 2020, 3, 261.	2.0	88
104	Spatial Embedding Imposes Constraints on Neuronal Network Architectures. Trends in Cognitive Sciences, 2018, 22, 1127-1142.	4.0	87
105	Structurally-Constrained Relationships between Cognitive States in the Human Brain. PLoS Computational Biology, 2014, 10, e1003591.	1.5	86
106	Brain and Social Networks: Fundamental Building Blocks of Human Experience. Trends in Cognitive Sciences, 2017, 21, 674-690.	4.0	86
107	Resolving Structural Variability in Network Models and the Brain. PLoS Computational Biology, 2014, 10, e1003491.	1.5	85
108	The community structure of functional brain networks exhibits scale-specific patterns of inter- and intra-subject variability. NeuroImage, 2019, 202, 115990.	2.1	85

#	Article	IF	CITATIONS
109	Disrupted basal ganglia–thalamocortical loops in focal to bilateral tonic-clonic seizures. Brain, 2020, 143, 175-190.	3.7	83
110	Dynamic Flexibility in Striatal-Cortical Circuits Supports Reinforcement Learning. Journal of Neuroscience, 2018, 38, 2442-2453.	1.7	82
111	The Citation Diversity Statement: A Practice of Transparency, A Way of Life. Trends in Cognitive Sciences, 2020, 24, 669-672.	4.0	82
112	The Energy Landscape of Neurophysiological Activity Implicit in Brain Network Structure. Scientific Reports, 2018, 8, 2507.	1.6	81
113	Temporal lobe epilepsy. Neurology, 2019, 92, e2209-e2220.	1.5	80
114	Topological distortion and reorganized modular structure of gut microbial co-occurrence networks in inflammatory bowel disease. Scientific Reports, 2016, 6, 26087.	1.6	79
115	A Network Neuroscience of Human Learning: Potential to Inform Quantitative Theories of Brain and Behavior. Trends in Cognitive Sciences, 2017, 21, 250-264.	4.0	78
116	Spectral mapping of brain functional connectivity from diffusion imaging. Scientific Reports, 2018, 8, 1411.	1.6	78
117	Novel Primate miRNAs Coevolved with Ancient Target Genes in Germinal Zone-Specific Expression Patterns. Neuron, 2014, 81, 1255-1262.	3.8	77
118	Associations between Neighborhood SES and Functional Brain Network Development. Cerebral Cortex, 2020, 30, 1-19.	1.6	74
119	A practical guide to methodological considerations in the controllability of structural brain networks. Journal of Neural Engineering, 2020, 17, 026031.	1.8	74
120	Data-driven control of complex networks. Nature Communications, 2021, 12, 1429.	5.8	72
121	Brain network dynamics during working memory are modulated by dopamine and diminished in schizophrenia. Nature Communications, 2021, 12, 3478.	5.8	69
122	Cross-linked structure of network evolution. Chaos, 2014, 24, 013112.	1.0	68
123	Fronto-limbic dysconnectivity leads to impaired brain network controllability in young people with bipolar disorder and those at high genetic risk. NeuroImage: Clinical, 2018, 19, 71-81.	1.4	66
124	Leveraging multi-shell diffusion for studies of brain development in youth and young adulthood. Developmental Cognitive Neuroscience, 2020, 43, 100788.	1.9	65
125	Broken detailed balance and entropy production in the human brain. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	65
126	Evolution of network architecture in a granular material under compression. Physical Review E, 2016, 94, 032908.	0.8	63

#	Article	IF	CITATIONS
127	Comparison of large-scale human brain functional and anatomical networks in schizophrenia. NeuroImage: Clinical, 2017, 15, 439-448.	1.4	62
128	Flexible Coordinator and Switcher Hubs for Adaptive Task Control. Journal of Neuroscience, 2020, 40, 6949-6968.	1.7	62
129	Towards precise resting-state fMRI biomarkers in psychiatry: synthesizing developments in transdiagnostic research, dimensional models of psychopathology, and normative neurodevelopment. Current Opinion in Neurobiology, 2020, 65, 120-128.	2.0	62
130	Understanding the Emergence of Neuropsychiatric Disorders With Network Neuroscience. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 2018, 3, 742-753.	1.1	61
131	Brain state expression and transitions are related to complex executive cognition in normative neurodevelopment. NeuroImage, 2018, 166, 293-306.	2.1	61
132	Stability Conditions for Cluster Synchronization in Networks of Heterogeneous Kuramoto Oscillators. IEEE Transactions on Control of Network Systems, 2020, 7, 302-314.	2.4	61
133	Teaching recurrent neural networks to infer global temporal structure from local examples. Nature Machine Intelligence, 2021, 3, 316-323.	8.3	61
134	Dynamic network centrality summarizes learning in the human brain. Journal of Complex Networks, 2013, 1, 83-92.	1.1	60
135	Mapping the structural and functional network architecture of the medial temporal lobe using 7T MRI. Human Brain Mapping, 2018, 39, 851-865.	1.9	60
136	Disrupted dynamic network reconfiguration of the language system in temporal lobe epilepsy. Brain, 2018, 141, 1375-1389.	3.7	59
137	Knowledge gaps in the early growth of semantic feature networks. Nature Human Behaviour, 2018, 2, 682-692.	6.2	59
138	Shared endo-phenotypes of default mode dysfunction in attention deficit/hyperactivity disorder and autism spectrum disorder. Translational Psychiatry, 2018, 8, 133.	2.4	59
139	Sex differences in network controllability as a predictor of executive function in youth. NeuroImage, 2019, 188, 122-134.	2.1	59
140	Transdiagnostic dimensions of psychopathology explain individuals' unique deviations from normative neurodevelopment in brain structure. Translational Psychiatry, 2021, 11, 232.	2.4	58
141	Gendered citation practices in the field of communication. Annals of the International Communication Association, 2021, 45, 134-153.	2.8	58
142	Resolving Anatomical and Functional Structure in Human Brain Organization: Identifying Mesoscale Organization in Weighted Network Representations. PLoS Computational Biology, 2014, 10, e1003712.	1.5	57
143	Integrating EEG and MEG Signals to Improve Motor Imagery Classification in Brain–Computer Interface. International Journal of Neural Systems, 2019, 29, 1850014.	3.2	57
144	Characterizing the role of the structural connectome in seizure dynamics. Brain, 2019, 142, 1955-1972.	3.7	56

#	Article	IF	CITATIONS
145	Functionalization of a protosynaptic gene expression network. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 10612-10618.	3.3	55
146	Intra- and Inter-Frequency Brain Network Structure in Health and Schizophrenia. PLoS ONE, 2013, 8, e72351.	1.1	54
147	Individual Differences in Dynamic Functional Brain Connectivity across the Human Lifespan. PLoS Computational Biology, 2016, 12, e1005178.	1.5	54
148	Evaluation of confound regression strategies for the mitigation of micromovement artifact in studies of dynamic resting-state functional connectivity and multilayer network modularity. Network Neuroscience, 2019, 3, 427-454.	1.4	54
149	Thalamus and focal to bilateral seizures. Neurology, 2020, 95, e2427-e2441.	1.5	54
150	The energy landscape underpinning module dynamics in the human brain connectome. NeuroImage, 2017, 157, 364-380.	2.1	53
151	Predicting future learning from baseline network architecture. NeuroImage, 2018, 172, 107-117.	2.1	52
152	Repetitive negative thinking in daily life and functional connectivity among default mode, fronto-parietal, and salience networks. Translational Psychiatry, 2019, 9, 234.	2.4	52
153	Emerging Evidence of Connectomic Abnormalities in Schizophrenia. Journal of Neuroscience, 2011, 31, 6263-6265.	1.7	50
154	A network engineering perspective on probing and perturbing cognition with neurofeedback. Annals of the New York Academy of Sciences, 2017, 1396, 126-143.	1.8	50
155	Cohesive network reconfiguration accompanies extended training. Human Brain Mapping, 2017, 38, 4744-4759.	1.9	50
156	Structural Controllability of Symmetric Networks. IEEE Transactions on Automatic Control, 2019, 64, 3740-3747.	3.6	50
157	Emerging Frontiers of Neuroengineering: A Network Science of Brain Connectivity. Annual Review of Biomedical Engineering, 2017, 19, 327-352.	5.7	49
158	Personalized Neuroscience: Common and Individual-Specific Features in Functional Brain Networks. Neuron, 2018, 98, 243-245.	3.8	49
159	Structural and functional asymmetry of medial temporal subregions in unilateral temporal lobe epilepsy: A 7T MRI study. Human Brain Mapping, 2019, 40, 2390-2398.	1.9	49
160	Multi-scale detection of hierarchical community architecture in structural and functional brain networks. PLoS ONE, 2019, 14, e0215520.	1.1	49
161	Functional control of electrophysiological network architecture using direct neurostimulation in humans. Network Neuroscience, 2019, 3, 848-877.	1.4	49
162	Emerging roles of network analysis for epilepsy. Epilepsy Research, 2020, 159, 106255.	0.8	49

#	Article	IF	CITATIONS
163	How humans learn and represent networks. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 29407-29415.	3.3	49
164	(In)citing Action to Realize an Equitable Future. Neuron, 2020, 106, 890-894.	3.8	48
165	Dynamic representations in networked neural systems. Nature Neuroscience, 2020, 23, 908-917.	7.1	48
166	Brain state flexibility accompanies motor-skill acquisition. NeuroImage, 2018, 171, 135-147.	2.1	47
167	Hunters, busybodies and the knowledge network building associated with deprivation curiosity. Nature Human Behaviour, 2021, 5, 327-336.	6.2	47
168	Optimization of energy state transition trajectory supports the development of executive function during youth. ELife, 2020, 9, .	2.8	47
169	Structure, function, and control of the human musculoskeletal network. PLoS Biology, 2018, 16, e2002811.	2.6	46
170	Models of communication and control for brain networks: distinctions, convergence, and future outlook. Network Neuroscience, 2020, 4, 1122-1159.	1.4	46
171	Functional hypergraph uncovers novel covariant structures over neurodevelopment. Human Brain Mapping, 2017, 38, 3823-3835.	1.9	44
172	Recurring Functional Interactions Predict Network Architecture of Interictal and Ictal States in Neocortical Epilepsy. ENeuro, 2017, 4, ENEURO.0091-16.2017.	0.9	44
173	Beyond modularity: Fine-scale mechanisms and rules for brain network reconfiguration. NeuroImage, 2018, 166, 385-399.	2.1	42
174	Learning, Memory, and the Role of Neural Network Architecture. PLoS Computational Biology, 2011, 7, e1002063.	1.5	41
175	Globally weaker and topologically different: resting-state connectivity in youth with autism. Molecular Autism, 2017, 8, 39.	2.6	41
176	Network Controllability in the Inferior Frontal Gyrus Relates to Controlled Language Variability and Susceptibility to TMS. Journal of Neuroscience, 2018, 38, 6399-6410.	1.7	41
177	High interictal connectivity within the resection zone is associated with favorable post-surgical outcomes in focal epilepsy patients. NeuroImage: Clinical, 2019, 23, 101908.	1.4	41
178	Human information processing in complex networks. Nature Physics, 2020, 16, 965-973.	6.5	41
179	Time-evolving controllability of effective connectivity networks during seizure progression. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	41
180	Development of structural correlations and synchronization from adaptive rewiring in networks of Kuramoto oscillators. Chaos, 2017, 27, 073115.	1.0	40

#	Article	IF	CITATIONS
181	Process reveals structure: How a network is traversed mediates expectations about its architecture. Scientific Reports, 2017, 7, 12733.	1.6	40
182	Network constraints on learnability of probabilistic motor sequences. Nature Human Behaviour, 2018, 2, 936-947.	6.2	40
183	Coherent activity between brain regions that code for value is linked to the malleability of human behavior. Scientific Reports, 2017, 7, 43250.	1.6	39
184	Autaptic Connections Shift Network Excitability and Bursting. Scientific Reports, 2017, 7, 44006.	1.6	39
185	Abstract representations of events arise from mental errors in learning and memory. Nature Communications, 2020, 11, 2313.	5.8	39
186	Different shades of default mode disturbance in schizophrenia: Subnodal covariance estimation in structure and function. Human Brain Mapping, 2018, 39, 644-661.	1.9	38
187	Network Approaches to Understand Individual Differences in Brain Connectivity: Opportunities for Personality Neuroscience, 2018, 1, .	1.3	38
188	Withinâ€person variability in curiosity during daily life and associations with wellâ€being. Journal of Personality, 2020, 88, 625-641.	1.8	37
189	Reflections on the past two decades of neuroscience. Nature Reviews Neuroscience, 2020, 21, 524-534.	4.9	35
190	Heritability and Cognitive Relevance of Structural Brain Controllability. Cerebral Cortex, 2020, 30, 3044-3054.	1.6	34
191	Data-driven brain network models differentiate variability across language tasks. PLoS Computational Biology, 2018, 14, e1006487.	1.5	32
192	Network Controllability in Transmodal Cortex Predicts Positive Psychosis Spectrum Symptoms. Biological Psychiatry, 2021, 90, 409-418.	0.7	32
193	The flexible brain. Brain, 2016, 139, 2110-2112.	3.7	31
194	Cortical-subcortical structural connections support transcranial magnetic stimulation engagement of the amygdala. Science Advances, 2022, 8, .	4.7	31
195	Topological and geometric measurements of force-chain structure. Physical Review E, 2016, 94, 032909.	0.8	30
196	Subgraphs of functional brain networks identify dynamical constraints of cognitive control. PLoS Computational Biology, 2018, 14, e1006234.	1.5	30
197	Network changes associated with transdiagnostic depressive symptom improvement following cognitive behavioral therapy in MDD and PTSD. Molecular Psychiatry, 2018, 23, 2314-2323.	4.1	30
198	Computational modeling of tau pathology spread reveals patterns of regional vulnerability and the impact of a genetic risk factor. Science Advances, 2021, 7, .	4.7	30

#	Article	IF	CITATIONS
199	Digital phenotyping for psychiatry: accommodating data and theory with network science methodologies. Current Opinion in Biomedical Engineering, 2019, 9, 8-13.	1.8	29
200	Network neuroscience for optimizing brain–computer interfaces. Physics of Life Reviews, 2019, 31, 304-309.	1.5	29
201	Space-independent community and hub structure of functional brain networks. NeuroImage, 2020, 211, 116612.	2.1	29
202	Normative intracranial EEG maps epileptogenic tissues in focal epilepsy. Brain, 2022, 145, 1949-1961.	3.7	29
203	Functional brain network architecture supporting the learning of social networks in humans. NeuroImage, 2020, 210, 116498.	2.1	28
204	Multimodal in vivo recording using transparent graphene microelectrodes illuminates spatiotemporal seizure dynamics at the microscale. Communications Biology, 2021, 4, 136.	2.0	28
205	Brain network efficiency is influenced by the pathologic source of corticobasal syndrome. Neurology, 2017, 89, 1373-1381.	1.5	27
206	Effective learning is accompanied by high-dimensional and efficient representations of neural activity. Nature Neuroscience, 2019, 22, 1000-1009.	7.1	27
207	Person-Based Brain Morphometric Similarity is Heritable and Correlates With Biological Features. Cerebral Cortex, 2019, 29, 852-862.	1.6	27
208	Benchmarking Measures of Network Controllability on Canonical Graph Models. Journal of Nonlinear Science, 2020, 30, 2195-2233.	1.0	27
209	Functional disconnection of associative cortical areas predicts performance during BCI training. NeuroImage, 2020, 209, 116500.	2.1	27
210	Evaluating the sensitivity of functional connectivity measures to motion artifact in resting-state fMRI data. NeuroImage, 2021, 241, 118408.	2.1	27
211	Dissociable multi-scale patterns of development in personalized brain networks. Nature Communications, 2022, 13, 2647.	5.8	27
212	Collective decision dynamics in the presence of external drivers. Physical Review E, 2012, 86, 036105.	0.8	26
213	Accelerated cortical thinning within structural brain networks is associated with irritability in youth. Neuropsychopharmacology, 2019, 44, 2254-2262.	2.8	26
214	Gene coexpression patterns predict opiate-induced brain-state transitions. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 19556-19565.	3.3	26
215	Atypical neural topographies underpin dysfunctional pattern separation in temporal lobe epilepsy. Brain, 2021, 144, 2486-2498.	3.7	26
216	Brainâ€based ranking of cognitive domains to predict schizophrenia. Human Brain Mapping, 2019, 40, 4487-4507.	1.9	25

#	Article	IF	CITATIONS
217	Relations between large-scale brain connectivity and effects of regional stimulation depend on collective dynamical state. PLoS Computational Biology, 2020, 16, e1008144.	1.5	25
218	Functional brain network reconfiguration during learning in a dynamic environment. Nature Communications, 2020, 11, 1682.	5.8	25
219	On the Nature of Explanations Offered by Network Science: A Perspective From and for Practicing Neuroscientists. Topics in Cognitive Science, 2020, 12, 1272-1293.	1.1	25
220	Intracranial electroencephalographic biomarker predicts effective responsive neurostimulation for epilepsy prior to treatment. Epilepsia, 2022, 63, 652-662.	2.6	25
221	Human Sensitivity to Community Structure Is Robust to Topological Variation. Complexity, 2019, 2019, 1-8.	0.9	24
222	Conformational control of mechanical networks. Nature Physics, 2019, 15, 714-720.	6.5	24
223	Multiâ€scale network regression for brainâ€phenotype associations. Human Brain Mapping, 2020, 41, 2553-2566.	1.9	24
224	Imaging local genetic influences on cortical folding. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 7430-7436.	3.3	24
225	Generative network models of altered structural brain connectivity in schizophrenia. NeuroImage, 2021, 225, 117510.	2.1	24
226	Classification of weighted networks through mesoscale homological features. Journal of Complex Networks, 0, , cnw013.	1.1	23
227	Structural Pathways Supporting Swift Acquisition of New Visuomotor Skills. Cerebral Cortex, 2017, 27, 173-184.	1.6	23
228	Cognitive Computational Neuroscience: A New Conference for an Emerging Discipline. Trends in Cognitive Sciences, 2018, 22, 365-367.	4.0	22
229	Defining and predicting transdiagnostic categories of neurodegenerative disease. Nature Biomedical Engineering, 2020, 4, 787-800.	11.6	22
230	Electrocorticography and stereo EEG provide distinct measures of brain connectivity: implications for network models. Brain Communications, 2021, 3, fcab156.	1.5	22
231	Disorganization of language and working memory systems in frontal versus temporal lobe epilepsy. Brain, 2023, 146, 935-953.	3.7	22
232	Functional Brain Network Characterization and Adaptivity during Task Practice in Healthy Volunteers and People with Schizophrenia1. Frontiers in Human Neuroscience, 2011, 5, 81.	1.0	21
233	Stability of spontaneous, correlated activity in mouse auditory cortex. PLoS Computational Biology, 2019, 15, e1007360.	1.5	21
234	Synchronization patterns in networks of Kuramoto oscillators: A geometric approach for analysis and control. , 2017, , .		20

#	Article	IF	CITATIONS
235	Multimodal electrophysiological analyses reveal that reduced synaptic excitatory neurotransmission underlies seizures in a model of NMDAR antibody-mediated encephalitis. Communications Biology, 2021, 4, 1106.	2.0	20
236	Within-person variability in sensation-seeking during daily life: Positive associations with alcohol use and self-defined risky behaviors Psychology of Addictive Behaviors, 2020, 34, 257-268.	1.4	20
237	A framework For brain atlases: Lessons from seizure dynamics. NeuroImage, 2022, 254, 118986.	2.1	20
238	RE: Warnings and caveats in brain controllability. NeuroImage, 2019, 197, 586-588.	2.1	19
239	Harmonizing functional connectivity reduces scanner effects in community detection. Neurolmage, 2022, 256, 119198.	2.1	19
240	Mind control as a guide for the mind. Nature Human Behaviour, 2017, 1, .	6.2	18
241	Invertible generalized synchronization: A putative mechanism for implicit learning in neural systems. Chaos, 2020, 30, 063133.	1.0	18
242	Network architectures supporting learnability. Philosophical Transactions of the Royal Society B: Biological Sciences, 2020, 375, 20190323.	1.8	18
243	Structural control energy of restingâ€ s tate functional brain states reveals less costâ€effective brain dynamics in psychosis vulnerability. Human Brain Mapping, 2021, 42, 2181-2200.	1.9	18
244	Individual differences in learning social and nonsocial network structures Journal of Experimental Psychology: Learning Memory and Cognition, 2019, 45, 253-271.	0.7	18
245	Efficient coding in the economics of human brain connectomics. Network Neuroscience, 2022, 6, 234-274.	1.4	18
246	Rentian scaling for the measurement of optimal embedding of complex networks into physical space. Journal of Complex Networks, 2017, 5, 199-218.	1.1	17
247	On Curiosity: A Fundamental Aspect of Personality, a Practice of Network Growth. Personality Neuroscience, 2018, 1, e13.	1.3	17
248	Brain Activity Tracks Population Information Sharing by Capturing Consensus Judgments of Value. Cerebral Cortex, 2019, 29, 3102-3110.	1.6	17
249	Data-Driven Approaches to Neuroimaging Analysis to Enhance Psychiatric Diagnosis and Therapy. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 2020, 5, 780-790.	1.1	17
250	The sensitivity of network statistics to incomplete electrode sampling on intracranial EEG. Network Neuroscience, 2020, 4, 484-506.	1.4	17
251	Functional brain network community structure in childhood: Unfinished territories and fuzzy boundaries. Neurolmage, 2022, 247, 118843.	2.1	17
252	Brain-wide visual habituation networks in wild type and fmr1 zebrafish. Nature Communications, 2022, 13, 895.	5.8	17

#	Article	IF	CITATIONS
253	Network Neuroscience: A Framework for Developing Biomarkers in Psychiatry. Current Topics in Behavioral Neurosciences, 2018, 40, 79-109.	0.8	16
254	Network Brain-Computer Interface (nBCI): An Alternative Approach for Cognitive Prosthetics. Frontiers in Neuroscience, 2018, 12, 790.	1.4	16
255	Large-scale dynamic modeling of task-fMRI signals via subspace system identification. Journal of Neural Engineering, 2018, 15, 066016.	1.8	16
256	Unifying the Notions of Modularity and Core–Periphery Structure in Functional Brain Networks during Youth. Cerebral Cortex, 2020, 30, 1087-1102.	1.6	16
257	Model-based design for seizure control by stimulation. Journal of Neural Engineering, 2020, 17, 026009.	1.8	16
258	Modeling brain, symptom, and behavior in the winds of change. Neuropsychopharmacology, 2021, 46, 20-32.	2.8	16
259	The network architecture of value learning. Network Neuroscience, 2018, 2, 128-149.	1.4	15
260	Comparing two classes of biological distribution systems using network analysis. PLoS Computational Biology, 2018, 14, e1006428.	1.5	15
261	Architecture and evolution of semantic networks in mathematics texts. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2020, 476, 20190741.	1.0	15
262	Learning in brain-computer interface control evidenced by joint decomposition of brain and behavior. Journal of Neural Engineering, 2020, 17, 046018.	1.8	15
263	DotMotif: an open-source tool for connectome subgraph isomorphism search and graph queries. Scientific Reports, 2021, 11, 13045.	1.6	15
264	Measuring and Modeling Behavioral Decision Dynamics in Collective Evacuation. PLoS ONE, 2014, 9, e87380.	1.1	14
265	A Framework to Control Functional Connectivity in the Human Brain. , 2019, , .		14
266	Control of brain network dynamics across diverse scales of space and time. Physical Review E, 2020, 101, 062301.	0.8	14
267	Phase/Amplitude Synchronization of Brain Signals During Motor Imagery BCI Tasks. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2021, 29, 1168-1177.	2.7	14
268	Linking Individual Differences in Personalized Functional Network Topography to Psychopathology in Youth. Biological Psychiatry, 2022, 92, 973-983.	0.7	14
269	Stretch-induced network reconfiguration of collagen fibres in the human facet capsular ligament. Journal of the Royal Society Interface, 2016, 13, 20150883.	1.5	13
270	A network neuroscience of neurofeedback for clinical translation. Current Opinion in Biomedical Engineering, 2017, 1, 63-70.	1.8	13

#	Article	IF	CITATIONS
271	Brain signal analytics from graph signal processing perspective. , 2017, , .		13
272	Locally stable brain states predict suppression of epileptic activity by enhanced cognitive effort. NeuroImage: Clinical, 2018, 18, 599-607.	1.4	13
273	The Promise and Challenges of Intensive Longitudinal Designs for Imbalance Models of Adolescent Substance Use. Frontiers in Psychology, 2018, 9, 1576.	1.1	13
274	The Structured Controllability Radius of Symmetric (Brain) Networks. , 2018, , .		13
275	Editorial: New Trends in Connectomics. Network Neuroscience, 2018, 2, 125-127.	1.4	13
276	The Network Structure of Tobacco Withdrawal in a Community Sample of Smokers Treated With Nicotine Patch and Behavioral Counseling. Nicotine and Tobacco Research, 2020, 22, 408-414.	1.4	13
277	Surges of Collective Human Activity Emerge from Simple Pairwise Correlations. Physical Review X, 2019, 9, .	2.8	13
278	The emergent integrated network structure of scientific research. PLoS ONE, 2019, 14, e0216146.	1.1	12
279	Harnessing networks and machine learning in neuropsychiatric care. Current Opinion in Neurobiology, 2019, 55, 32-39.	2.0	12
280	Mediated Remote Synchronization of Kuramoto-Sakaguchi Oscillators: The Number of Mediators Matters. , 2021, 5, 767-772.		12
281	Persistent sodium currents in <i>SCN1A</i> developmental and degenerative epileptic dyskinetic encephalopathy. Brain Communications, 2021, 3, fcab235.	1.5	12
282	How Dynamic Brain Networks Tune Social Behavior in Real Time. Current Directions in Psychological Science, 2018, 27, 413-421.	2.8	11
283	Reorderability of node-filtered order complexes. Physical Review E, 2020, 101, 052311.	0.8	11
284	Quantifying the compressibility of complex networks. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	11
285	The modulation of brain network integration and arousal during exploration. NeuroImage, 2021, 240, 118369.	2.1	11
286	Linear Dynamics and Control of Brain Networks. , 2020, , 497-518.		11
287	Drug-resistant focal epilepsy in children is associated with increased modal controllability of the whole brain and epileptogenic regions. Communications Biology, 2022, 5, 394.	2.0	11
288	The expanding horizons of network neuroscience: From description to prediction and control. NeuroImage, 2022, 258, 119250.	2.1	11

#	Article	IF	CITATIONS
289	Path-dependent connectivity, not modularity, consistently predicts controllability of structural brain networks. Network Neuroscience, 2020, 4, 1091-1121.	1.4	10
290	Neurocognitive and functional heterogeneity in depressed youth. Neuropsychopharmacology, 2021, 46, 783-790.	2.8	10
291	Pairwise maximum entropy model explains the role of white matter structure in shaping emergent co-activation states. Communications Biology, 2021, 4, 210.	2.0	10
292	Why network neuroscience? Compelling evidence and current frontiers. Physics of Life Reviews, 2014, 11, 455-457.	1.5	9
293	Dissociable changes in functional network topology underlie early category learning and development of automaticity. NeuroImage, 2016, 141, 220-241.	2.1	9
294	Spatial brain networks. Comptes Rendus Physique, 2018, 19, 253-264.	0.3	9
295	The landscape of NeuroImage-ing research. NeuroImage, 2018, 183, 872-883.	2.1	9
296	A subset of topologically associating domains fold into mesoscale core-periphery networks. Scientific Reports, 2019, 9, 9526.	1.6	9
297	Network Controllability in Transmodal Cortex Predicts Psychosis Spectrum Symptoms. Biological Psychiatry, 2021, 89, S370-S371.	0.7	9
298	Language Tasks and the Network Control Role of the Left Inferior Frontal Gyrus. ENeuro, 2021, 8, ENEURO.0382-20.2021.	0.9	9
299	Network controllability mediates the relationship between rigid structure and flexible dynamics. Network Neuroscience, 2022, 6, 275-297.	1.4	9
300	Language Recovery after Brain Injury: A Structural Network Control Theory Study. Journal of Neuroscience, 2022, 42, 657-669.	1.7	9
301	Information content of brain states is explained by structural constraints on state energetics. Physical Review E, 2022, 106, .	0.8	9
302	Characterization of Mental States through Node Connectivity between Brain Signals. , 2018, , .		8
303	Exact and Approximate Stability Conditions for Cluster Synchronization of Kuramoto Oscillators. , 2019, , .		8
304	Daily Stressor-Related Negative Mood and its Associations with Flourishing and Daily Curiosity. Journal of Happiness Studies, 2022, 23, 423-438.	1.9	8
305	Crystalline shielding mitigates structural rearrangement and localizes memory in jammed systems under oscillatory shear. Science Advances, 2021, 7, .	4.7	8
306	Phase-amplitude coupling in neuronal oscillator networks. Physical Review Research, 2021, 3, .	1.3	8

#	Article	IF	CITATIONS
307	Multimodal connectome biomarkers of cognitive and affective dysfunction in the common epilepsies. Network Neuroscience, 2022, 6, 320-338.	1.4	8
308	Learning about learning: Mining human brain sub-network biomarkers from fMRI data. PLoS ONE, 2017, 12, e0184344.	1.1	7
309	The brain produces mind by modeling. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 29299-29301.	3.3	7
310	The growth and form of knowledge networks by kinesthetic curiosity. Current Opinion in Behavioral Sciences, 2020, 35, 125-134.	2.0	7
311	Conditions for Feedback Linearization of Network Systems. , 2020, 4, 578-583.		7
312	Temporal networks of tobacco withdrawal symptoms during smoking cessation treatment Journal of Abnormal Psychology, 2021, 130, 89-101.	2.0	7
313	Relay Interactions Enable Remote Synchronization in Networks of Phase Oscillators. , 2022, 6, 500-505.		7
314	Associations between coherent neural activity in the brain's value system during antismoking messages and reductions in smoking Health Psychology, 2018, 37, 375-384.	1.3	7
315	Daily fluctuations in young children's persistence. Child Development, 2022, 93, .	1.7	7
316	A Powerful DREADD: Revealing Structural Drivers of Functional Dynamics. Neuron, 2016, 91, 213-215.	3.8	6
317	Spectral control of cortical activity. , 2017, , .		6
318	BCI learning induces core-periphery reorganization in M/EEG multiplex brain networks. Journal of Neural Engineering, 2021, 18, 056002.	1.8	6
319	Network structure of cascading neural systems predicts stimulus propagation and recovery. Journal of Neural Engineering, 2020, 17, 056045.	1.8	6
320	Seizing an opportunity. ELife, 2019, 8, .	2.8	6
321	Learning continuous chaotic attractors with a reservoir computer. Chaos, 2022, 32, 011101.	1.0	6
322	Daily sensation-seeking and urgency in young adults: Examining associations with alcohol use and self-defined risky behaviors. Addictive Behaviors, 2022, 127, 107219.	1.7	6
323	Neurophysiological Evidence for Cognitive Map Formation during Sequence Learning. ENeuro, 2022, 9, ENEURO.0361-21.2022.	0.9	6
324	Mobile footprinting: linking individual distinctiveness in mobility patterns to mood, sleep, and brain functional connectivity. Neuropsychopharmacology, 2022, 47, 1662-1671.	2.8	6

#	Article	IF	CITATIONS
325	From calcium imaging to graph topology. Network Neuroscience, 2022, 6, 1125-1147.	1.4	6
326	Bode meets Kuramoto: Synchronized clusters in oscillatory networks. , 2017, , .		5
327	Intersubject Synchronization of Late Adolescent Brain Responses to Violent Movies: A Virtue-Ethics Approach. Frontiers in Behavioral Neuroscience, 2019, 13, 260.	1.0	5
328	Response Inhibition in Adolescents is Moderated by Brain Connectivity and Social Network Structure. Social Cognitive and Affective Neuroscience, 2020, 15, 827-837.	1.5	5
329	Supervised chaotic source separation by a tank of water. Chaos, 2020, 30, 021101.	1.0	5
330	Reconfigurations within resonating communities of brain regions following TMS reveal different scales of processing. Network Neuroscience, 2020, 4, 611-636.	1.4	5
331	Synchronization of coupled Kuramoto oscillators under resource constraints. Physical Review E, 2021, 104, 014211.	0.8	5
332	Crystallinity characterization of white matter in the human brain. New Journal of Physics, 2021, 23, 073047.	1.2	5
333	Improving J-Divergence of Brain Connectivity States by Graph Laplacian Denoising. IEEE Transactions on Signal and Information Processing Over Networks, 2021, 7, 493-508.	1.6	5
334	Impact of childhood adversity on network reconfiguration dynamics during working memory in hypogonadal women. Psychoneuroendocrinology, 2020, 119, 104710.	1.3	5
335	A Network Science of the Practice of Curiosity. , 2020, , 57-74.		5
336	Topology in Biology. , 2020, , 1-23.		5
337	Controllability of Structural Brain Networks and the Waxing and Waning of Negative Affect in Daily Life. Biological Psychiatry Global Open Science, 2022, 2, 432-439.	1.0	5
338	Evolution of semantic networks in biomedical texts. Journal of Complex Networks, 2019, , .	1.1	4
339	Brain network analysis: a practical tutorial. Brain, 2016, 139, 3048-3049.	3.7	3
340	The architecture of co-morbidity networks of physical and mental health conditions in military veterans. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2020, 476, 20190790.	1.0	3
341	Path-dependent dynamics induced by rewiring networks of inertial oscillators. Physical Review E, 2022, 105, 024304.	0.8	3
342	IQ Modulates Coupling Between Diverse Dimensions of Psychopathology in Children and Adolescents. Journal of the American Academy of Child and Adolescent Psychiatry, 2023, 62, 59-73.	0.3	3

#	Article	IF	CITATIONS
343	Graph Signal Processing of Human Brain Imaging Data. , 2018, , .		2
344	Network architecture of energy landscapes in mesoscopic quantum systems. New Journal of Physics, 2019, 21, 123049.	1.2	2
345	The feasibility of an inâ€scanner smoking lapse paradigm to examine the neural correlates of lapses. Addiction Biology, 2021, 26, e13001.	1.4	2
346	Topology in Biology. , 2021, , 2073-2095.		2
347	Network structure of neural systems supporting cascading dynamics predicts stimulus propagation and recovery. , 2019, , .		2
348	Variability in higher order structure of noise added to weighted networks. Communications Physics, 2021, 4, .	2.0	2
349	A multilayer network model of neuron-astrocyte populations in vitro reveals mGluR5 inhibition is protective following traumatic injury. Network Neuroscience, 2022, 6, 499-527.	1.4	2
350	OUP accepted manuscript. Brain, 2022, , .	3.7	2
351	Individual differences in frontoparietal plasticity in humans. Npj Science of Learning, 2022, 7, .	1.5	2
352	Sex Differences in Functional Topography of Association Networks. Biological Psychiatry, 2021, 89, S178.	0.7	1
353	Surges of Collective Human Activity Emerge from Simple Pairwise Correlations. , 0, .		1
354	Altered functional brain dynamics in chromosome 22q11.2 deletion syndrome during facial affect processing. Molecular Psychiatry, 2022, 27, 1158-1166.	4.1	1
355	Comment le cerveau crée la pensée. , 2020, Nº 117, 18-27.		1
356	Nonlinear Dynamics and Chaos in Conformational Changes of Mechanical Metamaterials. Physical Review X, 2022, 12, .	2.8	1
357	Edgework. , 2022, , 259-278.		1
358	Structural drivers of function in information processing networks. , 2011, , .		0
359	Identification of networks of Wilson-Cowan neuronal oscillators by inverse sigmoidal transformation. , 2016, , .		0
360	Missed Connections: A Network Approach to Understanding Psychiatric Illness. Biological Psychiatry, 2018, 84, e9-e11.	0.7	0

#	Article	IF	CITATIONS
361	33. Discovering Linked Dimensions of Psychopathology and Functional Connectivity. Biological Psychiatry, 2018, 83, S13-S14.	0.7	Ο
362	Altered Functional Brain Dynamics During Facial Affect Processing in Chromosome 22q11.2 Deletion Syndrome. Biological Psychiatry, 2020, 87, S140.	0.7	0
363	Naturalistic Fluctuations In Night-to-night Sleep Duration And Quality And Their Associations With Next Day Perceived Stress And Negative Mood. Medicine and Science in Sports and Exercise, 2021, 53, 302-302.	0.2	Ο
364	How We Learn About Our Networked World. Frontiers for Young Minds, 0, 10, .	0.8	0
365	P683. Sex Differences in the Functional Topography of Association Networks in Youths. Biological Psychiatry, 2022, 91, S366-S367.	0.7	Ο
366	P402. Asymmetries in Signal Propagation Across the Cortical Hierarchy Predicts Executive Function in Youth. Biological Psychiatry, 2022, 91, S249-S250.	0.7	0
367	Within-Person Associations Among Physical Activity, Sleep, and Well-being in Situ: Opportunities for Whole-Person Well-being. Iproceedings, 2022, 8, e39268.	0.1	Ο
368	Characterizing Youth-Caregiver Concordance and Discrepancies in Psychopathology Symptoms in a US Community Sample. Issues in Mental Health Nursing, 0, , 1-10.	0.6	0