Elizabeth J Glass

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5354903/publications.pdf

Version: 2024-02-01

86 papers

4,504 citations

36 h-index 65 g-index

87 all docs

87 docs citations

times ranked

87

5293 citing authors

#	Article	IF	CITATIONS
1	The Genome Sequence of Taurine Cattle: A Window to Ruminant Biology and Evolution. Science, 2009, 324, 522-528.	6.0	1,038
2	Variation matters: TLR structure and species-specific pathogen recognition. Trends in Immunology, 2009, 30, 124-130.	2.9	229
3	Differential response of bovine mammary epithelial cells to Staphylococcus aureus or Escherichia coli agonists of the innate immune system. Veterinary Research, 2013, 44, 40.	1.1	191
4	Comparative organization and function of the major histocompatibility complex of domesticated cattle. Immunological Reviews, 1999, 167, 145-158.	2.8	125
5	Escherichia coli- and Staphylococcus aureus-induced mastitis differentially modulate transcriptional responses in neighbouring uninfected bovine mammary gland quarters. BMC Genomics, 2013, 14, 36.	1.2	125
6	Bos taurus and Bos indicus (Sahiwal) calves respond differently to infection with Theileria annulata and produce markedly different levels of acute phase proteins. International Journal for Parasitology, 2005, 35, 337-347.	1.3	118
7	A rapid and robust sequenceâ€based genotyping method for <i>BoLAâ€DRB3</i> alleles in large numbers of heterozygous cattle. Animal Genetics, 2008, 39, 561-563.	0.6	100
8	Genome-wide association study identifies novel loci associated with resistance to bovine tuberculosis. Heredity, 2014, 112, 543-551.	1.2	92
9	Traits associated with innate and adaptive immunity in pigs: heritability and associations with performance under different health status conditions. Genetics Selection Evolution, 2009, 41, 54.	1.2	88
10	Radiation hybrid mapping of all 10 characterized bovine Toll-like receptors. Animal Genetics, 2006, 37, 47-50.	0.6	83
11	Bovine tuberculosis: the genetic basis of host susceptibility. Proceedings of the Royal Society B: Biological Sciences, 2010, 277, 2737-2745.	1.2	83
12	Molecular evolution of bovine Toll-like receptor 2 suggests substitutions of functional relevance. BMC Evolutionary Biology, 2008, 8, 288.	3.2	70
13	Innate immune traits differ between Meishan and Large White pigs. Veterinary Immunology and Immunopathology, 2005, 104, 131-144.	0.5	67
14	In-silico identification of chicken immune-related genes. Immunogenetics, 2004, 56, 122-133.	1.2	62
15	TGF-b2 Induction Regulates Invasiveness of Theileria-Transformed Leukocytes and Disease Susceptibility. PLoS Pathogens, 2010, 6, e1001197.	2.1	62
16	Innate and Adaptive Immune Responses Co-operate to Protect Cattle against Theileria annulata. Parasitology Today, 1999, 15, 268-274.	3.1	60
17	Infection of bovine monocyte/macrophage populations with Theileria annulata and Theileria parva. Veterinary Immunology and Immunopathology, 1989, 22, 355-368.	0.5	59
18	Association of bovine DRB3 alleles with immune response to FMDV peptides and protection against viral challenge. Vaccine, 2000, 19, 1167-1171.	1.7	59

#	Article	IF	CITATIONS
19	Strengthening insights into host responses to mastitis infection in ruminants by combining heterogeneous microarray data sources. BMC Genomics, 2011, 12, 225.	1.2	58
20	BoLA-DR peptide binding pockets are fundamental for foot-and-mouth disease virus vaccine design in cattle. Vaccine, 2009, 28, 28-37.	1.7	56
21	Differences in the transcriptional responses induced by Theileria annulata infection in bovine monocytes derived from resistant and susceptible cattle breeds. International Journal for Parasitology, 2008, 38, 313-325.	1.3	54
22	Genetic variation and responses to vaccines. Animal Health Research Reviews, 2004, 5, 197-208.	1.4	53
23	Molecular cloning and characterization of Toll-like receptors 1-10 in sheep. Veterinary Immunology and Immunopathology, 2009, 127, 94-105.	0.5	52
24	The protozoan parasite, Theileria annulata, induces a distinct acute phase protein response in cattle that is associated with pathology. International Journal for Parasitology, 2003, 33, 1409-1418.	1.3	51
25	Resistance and susceptibility to a protozoan parasite of cattle—Gene expression differences in macrophages from different breeds of cattle. Veterinary Immunology and Immunopathology, 2007, 120, 20-30.	0.5	51
26	Theileria annulata sporozoite antigen fused to hepatitis B core antigen used in a vaccination trial. Vaccine, 1995, 13, 1152-1160.	1.7	50
27	Quantitative analysis of pro-inflammatory cytokine mRNA expression in Theileria annulata-infected cell lines derived from resistant and susceptible cattle. Veterinary Immunology and Immunopathology, 2004, 99, 87-98.	0.5	49
28	Phenotypic and functional analysis of monocyte populations in cattle peripheral blood identifies a subset with high endocytic and allogeneic T-cell stimulatory capacity. Veterinary Research, 2015, 46, 112.	1.1	49
29	A non-protective T helper 1 response against the intra-macrophage protozoan Theileria annulata. Clinical and Experimental Immunology, 1997, 108, 463-470.	1.1	45
30	Different Vaccine Strategies Used to Protect against Theileria annulataa. Annals of the New York Academy of Sciences, 1998, 849, 234-246.	1.8	43
31	Pig peripheral blood mononuclear leucocyte subsets are heritable and genetically correlated with performance. Animal, 2008, 2, 1575-1584.	1.3	42
32	Genomic Prediction for Tuberculosis Resistance in Dairy Cattle. PLoS ONE, 2014, 9, e96728.	1.1	42
33	Proinflammatory cytokine expression by Theileria annulata infected cell lines correlates with the pathology they cause in vivo. Vaccine, 2001, 19, 2932-2944.	1.7	41
34	Parasite-accessory cell interactions in Theileriosis. Antigen presentation byTheileria annulata-infected macrophages and production of continuously growing antigen-presenting cell lines. European Journal of Immunology, 1990, 20, 2491-2497.	1.6	38
35	Review: Innate immunity to tropical theileriosis. Innate Immunity, 2008, 14, 5-12.	1.1	38
36	Adaptive evolution of Toll-like receptor 5 in domesticated mammals. BMC Evolutionary Biology, 2012, 12, 122.	3.2	38

#	Article	IF	CITATIONS
37	Development and validation of a bovine macrophage specific cDNA microarray. BMC Genomics, 2006, 7, 224.	1.2	36
38	Comparative genomics of Toll-like receptor signalling in five species. BMC Genomics, 2009, 10, 216.	1.2	36
39	Living with the enemy or uninvited guests: Functional genomics approaches to investigating host resistance or tolerance traits to a protozoan parasite, Theileria annulata, in cattle. Veterinary Immunology and Immunopathology, 2012, 148, 178-189.	0.5	36
40	The molecular pathways underlying host resistance and tolerance to pathogens. Frontiers in Genetics, 2012, 3, 263.	1.1	35
41	Molecular immunophenotyping of lungs and spleens in naive and vaccinated chickens early after pulmonary avian influenza A (H9N2) virus infection. Vaccine, 2006, 24, 6096-6109.	1.7	34
42	The level of H 2 O 2 type oxidative stress regulates virulence of T heileria â€transformed leukocytes. Cellular Microbiology, 2014, 16, 269-279.	1.1	34
43	Bovine mononuclear cell lines transformed by Theileria parva or Theileria annulata express different subpopulation markers. Parasite Immunology, 1988, 10, 619-629.	0.7	33
44	Quantitative trait loci for variation in immune response to a Foot-and-Mouth Disease virus peptide. BMC Genetics, 2010, 11, 107.	2.7	33
45	Development of a chicken 5 K microarray targeted towards immune function. BMC Genomics, 2006, 7, 49.	1.2	32
46	Genes controlling vaccine responses and disease resistance to respiratory viral pathogens in cattle. Veterinary Immunology and Immunopathology, 2012, 148, 90-99.	0.5	31
47	Field-Isolated Genotypes of Mycobacterium bovis Vary in Virulence and Influence Case Pathology but Do Not Affect Outbreak Size. PLoS ONE, 2013, 8, e74503.	1.1	31
48	Quantitative evaluation of genetic and environmental parameters determining antibody response induced by vaccination against bovine respiratory syncytial virus. Vaccine, 2006, 24, 4007-4016.	1.7	30
49	The expanding role of microarrays in the investigation of macrophage responses to pathogens. Veterinary Immunology and Immunopathology, 2005, 105, 259-275.	0.5	29
50	Theileria annulata sporozoite targets. Parasite Immunology, 1994, 16, 501-505.	0.7	27
51	Host species adaptation of TLR5 signalling and flagellin recognition. Scientific Reports, 2017, 7, 17677.	1.6	27
52	The balance between protective immunity and pathogenesis in tropical theileriosis: what we need to know to design effective vaccines for the future. Research in Veterinary Science, 2001, 70, 71-75.	0.9	26
53	Impairment of monocyte ?lectin-like? receptor activity in Type 1 (insulin-dependent) diabetic patients. Diabetologia, 1987, 30, 228-231.	2.9	24
54	The association between plasma levels of acute phase proteins, haptoglobin, alpha-1 acid glycoprotein (AGP), Pig-MAP, transthyretin and serum amyloid A (SAA) in Large White and Meishan pigs. Veterinary Immunology and Immunopathology, 2007, 119, 303-309.	0.5	24

#	Article	IF	CITATIONS
55	Phenotypic and genotypic alterations associated with the attenuation of a Theileria annulata vaccine cell line from Turkey. Vaccine, 1998, 16, 569-575.	1.7	23
56	Bovine T cells preferentially recognize non-viral spacer epitopes in a putative FMDV vaccinal peptide. Vaccine, 1995, 13, 225-229.	1.7	22
57	Reciprocal cross-protection induced by sporozoite antigens SPAG-1 from Theileria annulata and p67 from Theileria parva. Parasite Immunology, 2000, 22, 223-230.	0.7	22
58	Evaluation of recombinant sporozoite antigen SPAG-1 as a vaccine candidate against Theileria annulata by the use of different delivery systems. Tropical Medicine and International Health, 1999, 4, A71-A77.	1.0	20
59	Characterization of cattle cDNA sequences from two DQA loci. Immunogenetics, 1997, 45, 455-458.	1.2	19
60	Evidence for strain specificity in cytotoxic T-lymphocyte-mediated, major histocompatibility complex class I-dependent killing of Theileria annulata -infected cells. Parasitology Research, 1998, 84, 593-595.	0.6	19
61	Transcriptomic Profiling of Virus-Host Cell Interactions following Chicken Anaemia Virus (CAV) Infection in an In Vivo Model. PLoS ONE, 2015, 10, e0134866.	1.1	19
62	Quantitative Trait Loci Associated with the Immune Response to a Bovine Respiratory Syncytial Virus Vaccine. PLoS ONE, 2012, 7, e33526.	1.1	19
63	The protozoan parasite Theileria annulata alters the differentiation state of the infected macrophage and suppresses musculoaponeurotic fibrosarcoma oncogene (MAF) transcription factors. International Journal for Parasitology, 2009, 39, 1099-1108.	1.3	18
64	Functional analysis of bovine TLR5 and association with IgA responses of cattle following systemic immunisation with H7 flagella. Veterinary Research, 2015, 46, 9.	1.1	17
65	Enhancing the toolbox to study IL-17A in cattle and sheep. Veterinary Research, 2017, 48, 20.	1.1	17
66	Macrophage binding of Staphylococcus albus is blocked by anti I-region alloantibody. Nature, 1982, 298, 852-854.	13.7	15
67	Generation and characterisation of bovine antigen-specific T cell lines. Journal of Immunological Methods, 1990, 128, 267-275.	0.6	15
68	Associations of weight gain and food intake with leukocyte sub-sets in Large White pigs. Livestock Science, 2005, 96, 249-260.	1.2	15
69	Using genomic approaches to unravel livestock (host)–tick–pathogen interactions. Trends in Parasitology, 2007, 23, 439-444.	1.5	15
70	Detectability of bovine TB using the tuberculin skin test does not vary significantly according to pathogen genotype within Northern Ireland. Infection, Genetics and Evolution, 2013, 19, 15-22.	1.0	13
71	Selection for lean growth and food intake leads to correlated changes in innate immune traits in Large White pigs. Animal Science, 2006, 82, 867-876.	1.3	12
72	Sequence and transfection of BoLAâ€DRB3 cDNAs. Animal Genetics, 2000, 31, 219-222.	0.6	11

#	Article	IF	CITATIONS
73	Cytokine responses of Holstein and Sahiwal zebu derived monocytes after mycobacterial infection. Tropical Animal Health and Production, 2012, 44, 651-655.	0.5	10
74	Live and inactivated Salmonella enterica serovar Typhimurium stimulate similar but distinct transcriptome profiles in bovine macrophages and dendritic cells. Veterinary Research, 2016, 47, 46.	1.1	9
75	Evidence for genetic variance in resistance to tuberculosis in Great Britain and Irish Holstein-Friesian populations. BMC Proceedings, 2011, 5, S15.	1.8	8
76	Characterization of efferent lymph cells and their function following immunization of cattle with an allogenic Theileria annulata infected cell line. Veterinary Immunology and Immunopathology, 2003, 93, 39-49.	0.5	7
77	Construction of a normalized Bos taurus and Bos indicus macrophage-specific cDNA library. Animal Genetics, 2006, 37, 75-77.	0.6	7
78	A Stage-specific, Parasite-induced, "Window―of in Vivo Interferon-γ Production Is Associated with Pathogenesis in Theileria annulata Infection. Annals of the New York Academy of Sciences, 1998, 849, 152-154.	1.8	6
79	Qualitative variation in the immune response to ovarian follicular fluid proteins in cattle. Journal of Reproductive Immunology, 1988, 14, 151-163.	0.8	5
80	Late production of CXCL8 in ruminant oro-nasal turbinate cells in response to Chlamydia abortus infection. Veterinary Immunology and Immunopathology, 2015, 168, 97-102.	0.5	5
81	Parasite-Mediated Steps in Immune Response Failure During PrimaryTheileria AnnulataInfection. Tropical Animal Health and Production, 1997, 29, 133S-135S.	0.5	4
82	Cytokine Production/T-Cell-stimulatory Ability of Theileria annulata-infected Cells and Post-Vaccinal Reactions. Annals of the New York Academy of Sciences, 1998, 849, 412-415.	1.8	4
83	Functional expression of a cattle MHC class II DR-like antigen on mouse L cells. Immunogenetics, 1996, 43, 296-303.	1.2	4
84	Modulation of mouse macrophage receptors by various inflammatory agents. Agents and Actions, 1984, 15, 12-13.	0.7	2
85	Functional expression of a bovine major histocompatibility complex class I gene in transgenic mice. Veterinary Immunology and Immunopathology, 2002, 87, 417-421.	0.5	2

Analysis of the real EADGENE data set: Multivariate approaches and post analysis (<i>Open Access) Tj ETQq0 0 0 rgBT /Overlqck 10 Tf 50 analysis of the real EADGENE data set: Multivariate approaches and post analysis (<i