Nathalie Ollat

List of Publications by Year

 in descending orderSource: https:/|exaly.com/author-pdf/5354874/publications.pdf
Version: 2024-02-01

1 A correlative light electron microscopy approach reveals plasmodesmata ultrastructure at the graft
Characterization of genetic determinants of the resistance to phylloxera, Daktulosphaira vitifoliae,
4 and the dagger nematode Xiphinema index from muscadine background. BMC Plant Biology, 2020, 20,
5 Genetic and Genomic Approaches for Adaptation of Grapevine to Climate Change. , 2020, , 157-270.
The Impact of Possible Decadal-Scale Cold Waves on Viticulture over Europe in a Context of Global Warming. Agronomy, 2019, 9, 397.
$7 \quad$ An Update on the Impact of Climate Change in Viticulture and Potential Adaptations. Agronomy, 2019, 9,
514.

8 Merging genotypes: graft union formation and scionâ€"rootstock interactions. Journal of Experimental 8 Botany, 2019, 70, 747-755.
11 The risk of tardive frost damage in French vineyards in a changing climate. Agricultural and Forest
Meteorology, 2018, 250-251, 226-242.
59
12 Genetic architecture of aerial and root traits in field-grown grafted grapevines is largely3.619independent. Theoretical and Applied Genetics, 2018, 131, 903-915.

Potential contribution of strigolactones in regulating scion growth and branching in grafted
4.8

22
grapevine in response to nitrogen availability. Journal of Experimental Botany, 2018, 69, 4099-4112.

The challenging issue of climate change for sustainable grape and wine production. Oeno One, 2017,
1.4

20
14 51,59-60.

Climate Change Impacts and Adaptations: New Challenges for the Wine Industry. Journal of Wine
0.8

55

Mapping genetic loci for tolerance to lime-induced iron deficiency chlorosis in grapevine rootstocks
(Vitis sp.). Theoretical and Applied Genetics, 2013, 126, 451-473.

[^0]4.8

133

Why climate change will not dramatically decrease viticultural suitability in main wine-producing

110, E3051-2.

[^0]: Graft union formation in grapevine induces transcriptional changes related to cell wall
 17 modification, wounding, hormone signalling, and secondary metabolism. Journal of Experimental
 Botany, 2013, 64, 2997-3008.

