Henry M Krause

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5354749/publications.pdf

Version: 2024-02-01

218592 182361 3,918 54 26 h-index citations papers

g-index 57 57 57 4394 docs citations times ranked citing authors all docs

51

#	Article	IF	CITATIONS
1	Global Analysis of mRNA Localization Reveals a Prominent Role in Organizing Cellular Architecture and Function. Cell, 2007, 131, 174-187.	13.5	878
2	Fly Cell Atlas: A single-nucleus transcriptomic atlas of the adult fruit fly. Science, 2022, 375, eabk2432.	6.0	295
3	The Drosophila Nuclear Receptor E75 Contains Heme and Is Gas Responsive. Cell, 2005, 122, 195-207.	13.5	235
4	The Drosophila Orphan Nuclear Receptor DHR38 Mediates an Atypical Ecdysteroid Signaling Pathway. Cell, 2003, 113, 731-742.	13.5	226
5	The New RNA World: Growing Evidence for Long Noncoding RNA Functionality. Trends in Genetics, 2017, 33, 665-676.	2.9	192
6	The nuclear receptor homologue Ftz-F1 and the homeodomain protein Ftz are mutually dependent cofactors. Nature, 1997, 385, 548-552.	13.7	180
7	Nitric oxide coordinates metabolism, growth, and development via the nuclear receptor E75. Genes and Development, 2011, 25, 1476-1485.	2.7	118
8	Diverse and pervasive subcellular distributions for both coding and long noncoding RNAs. Genes and Development, 2016, 30, 594-609.	2.7	116
9	The Structural Basis of Gas-Responsive Transcription by the Human Nuclear Hormone Receptor REV-ERBÎ ² . PLoS Biology, 2009, 7, e1000043.	2.6	115
10	Apical Localization of wingless Transcripts Is Required for Wingless Signaling. Cell, 2001, 105, 197-207.	13.5	112
11	Long Noncoding RNAs and Repetitive Elements: Junk or Intimate Evolutionary Partners?. Trends in Genetics, 2019, 35, 892-902.	2.9	107
12	Homeodomain-independent activity of the fushi tarazu polypeptide in Drosophila embryos. Nature, 1992, 356, 610-612.	13.7	100
13	Fluorescent In Situ Hybridization Protocols in Drosophila Embryos and Tissues. Methods in Molecular Biology, 2008, 420, 289-302.	0.4	100
14	The <i>Drosophila</i> DHR96 nuclear receptor binds cholesterol and regulates cholesterol homeostasis. Genes and Development, 2009, 23, 2711-2716.	2.7	94
15	Patterning of the Drosophila embryo by a homeodomain-deleted Ftz polypeptide. Nature, 1996, 379, 162-165.	13.7	92
16	Dynamic regulation of Drosophila nuclear receptor activity in vivo. Development (Cambridge), 2006, 133, 3549-3562.	1.2	91
17	The Zebrafish: A Powerful Platform for <i>In Vivo</i> , HTS Drug Discovery. Assay and Drug Development Technologies, 2011, 9, 354-361.	0.6	91
18	Nuclear Receptors <i>Homo sapiens</i> Rev-erbl² and <i>Drosophila melanogaster</i> E75 Are Thiolate-Ligated Heme Proteins Which Undergo Redox-Mediated Ligand Switching and Bind CO and NO. Biochemistry, 2009, 48, 7056-7071.	1.2	79

#	Article	IF	CITATIONS
19	Global implications of mRNA localization pathways in cellular organization. Current Opinion in Cell Biology, 2009, 21, 409-415.	2.6	46
20	Anterior-posterior patterning in the Drosophila embryo. Advances in Developmental Biology and Biochemistry, 2002, 12, 155-204.	0.3	43
21	A Live Zebrafish-Based Screening System for Human Nuclear Receptor Ligand and Cofactor Discovery. PLoS ONE, 2010, 5, e9797.	1.1	41
22	A modified tandem affinity purification strategy identifies cofactors of theDrosophila nuclear receptor dHNF4. Proteomics, 2006, 6, 927-935.	1.3	39
23	Developmentally Regulated Elimination of Damaged Nuclei Involves a Chk2-Dependent Mechanism of mRNA Nuclear Retention. Developmental Cell, 2014, 29, 468-481.	3.1	37
24	New and Prospective Roles for IncRNAs in Organelle Formation and Function. Trends in Genetics, 2018, 34, 736-745.	2.9	30
25	15-keto-prostaglandin E2 activates host peroxisome proliferator-activated receptor gamma (PPAR- \hat{l}^3) to promote Cryptococcus neoformans growth during infection. PLoS Pathogens, 2019, 15, e1007597.	2.1	30
26	Nuclear Receptors: Small Molecule Sensors that Coordinate Growth, Metabolism and Reproduction. Sub-Cellular Biochemistry, 2011, 52, 123-153.	1.0	29
27	Syndecan contributes to heart cell specification and lumen formation during Drosophila cardiogenesis. Developmental Biology, 2011, 356, 279-290.	0.9	29
28	Single-cell RNA-sequencing reveals pre-meiotic X-chromosome dosage compensation in Drosophila testis. PLoS Genetics, 2021, 17, e1009728.	1.5	29
29	A stem-loop structure in the wingless transcript defines a consensus motif for apical RNA transport. Development (Cambridge), 2008, 135, 133-143.	1.2	27
30	Single and Double FISH Protocols for Drosophila. , 1999, 122, 93-102.		26
31	Idebenone and coenzyme Q10 are novel PPARÎ \pm /Î 3 ligands, with potential for treatment of fatty liver diseases. DMM Disease Models and Mechanisms, 2018, 11, .	1.2	26
32	A Multiprotein Complex That Mediates Translational Enhancement in Drosophila. Journal of Biological Chemistry, 2007, 282, 34031-34038.	1.6	24
33	A Roadmap to the Structure-Related Metabolism Pathways of Per- and Polyfluoroalkyl Substances in the Early Life Stages of Zebrafish (<i>Danio rerio</i>). Environmental Health Perspectives, 2021, 129, 77004.	2.8	22
34	Fluorescence In Situ Hybridization in Whole-Mount <i>Drosophila</i> Embryos. BioTechniques, 1996, 20, 748-750.	0.8	21
35	Nuclear Hormone Receptors, Metabolism, and Aging: What Goes Around Comes Around. Science of Aging Knowledge Environment: SAGE KE, 2004, 2004, re8-re8.	0.9	21
36	High-Resolution Fluorescent In Situ Hybridization of Drosophila Embryos and Tissues. Cold Spring Harbor Protocols, 2008, 2008, pdb.prot5019-pdb.prot5019.	0.2	20

#	Article	IF	CITATIONS
37	In Situ Hybridization: Fruit Fly Embryos and Tissues. Current Protocols in Essential Laboratory Techniques, 2010, 4, 9.3.1.	2.6	18
38	The omega-3 hydroxy fatty acid 7($\langle i \rangle S \langle i \rangle$)-HDHA is a high-affinity PPARα ligand that regulates brain neuronal morphology. Science Signaling, 2022, 15, .	1.6	17
39	Crystal Structure of Fushi Tarazu Factor 1 Ligand Binding Domain/Fushi Tarazu Peptide Complex Identifies New Class of Nuclear Receptors. Journal of Biological Chemistry, 2011, 286, 31225-31231.	1.6	16
40	Spatial Profiling of Nuclear Receptor Transcription Patterns over the Course of <i>Drosophila </i> Development. G3: Genes, Genomes, Genetics, 2013, 3, 1177-1189.	0.8	13
41	Identification of dAven, aDrosophila melanogasterortholog of the cell cycle regulator Aven. Cell Cycle, 2011, 10, 989-998.	1.3	12
42	Toxicokinetics of Brominated Azo Dyes in the Early Life Stages of Zebrafish (<i>Danio rerio</i>) Is Prone to Aromatic Substituent Changes. Environmental Science & Environment	4.6	12
43	Germ Cell Segregation from the Drosophila Soma Is Controlled by an Inhibitory Threshold Set by the Arf-GEF Steppke. Genetics, 2015, 200, 863-872.	1.2	11
44	Tantalus, a Novel ASX-Interacting Protein with Tissue-Specific Functions. Developmental Biology, 2001, 234, 441-453.	0.9	10
45	High Resolution Fluorescent In Situ Hybridization in Drosophila Embryos and Tissues Using Tyramide Signal Amplification. Journal of Visualized Experiments, 2017, , .	0.2	10
46	An optimized QF-binary expression system for use in zebrafish. Developmental Biology, 2020, 465, 144-156.	0.9	10
47	Distinct Regulation of Transmitter Release at the Drosophila NMJ by Different Isoforms of nemy. PLoS ONE, 2015, 10, e0132548.	1.1	9
48	Phenolic Lipids Derived from Cashew Nut Shell Liquid to Treat Metabolic Diseases. Journal of Medicinal Chemistry, 2022, 65, 1961-1978.	2.9	6
49	Control of tissue size and development by a regulatory element in the 3'UTR. American Journal of Cancer Research, 2017, 7, 673-687.	1.4	4
50	A Functional Analysis of the <i>Drosophila </i> Gene <i>hindsight </i> Evidence for Positive Regulation of EGFR Signaling. G3: Genes, Genomes, Genetics, 2020, 10, 117-127.	0.8	3
51	Modifiers of bx1 alter the distribution of Ubx proteins in haltere imaginal discs of Drosophila. Developmental Biology, 1992, 151, 611-616.	0.9	2
52	In Situ Hybridization: Fruit Fly Embryos and Tissues. Current Protocols in Essential Laboratory Techniques, 2017, 15, 9.3.1.	2.6	2
53	tantalus, a potential link between Notch signalling and chromatin-remodelling complexes. Development Genes and Evolution, 2005, 215, 255-260.	0.4	1
54	Global analysis of mRNA localization reveals a prominent role in the organization of cellular architecture and function. FASEB Journal, 2009, 23, 194.2.	0.2	0