Xuening Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5354569/publications.pdf Version: 2024-02-01

XUENING CHEN

#	Article	IF	CITATIONS
1	Optimal regenerative repair of large segmental bone defect in a goat model with osteoinductive calcium phosphate bioceramic implants. Bioactive Materials, 2022, 11, 240-253.	15.6	37
2	Regulation of macrophage polarization and functional status by modulating hydroxyapatite ceramic micro/nano-topography. Materials and Design, 2022, 213, 110302.	7.0	12
3	Fabrication and biological evaluation of 3D-printed calcium phosphate ceramic scaffolds with distinct macroporous geometries through digital light processing technology. International Journal of Energy Production and Management, 2022, 9, .	3.7	18
4	Design of macropore structure and micro-nano topography to promote the early neovascularization and osteoinductivity of biphasic calcium phosphate bioceramics. Materials and Design, 2022, 216, 110581.	7.0	12
5	Reinforcing the function of bone graft via the Ca-P ceramics dynamic behavior-enhanced osteogenic microenvironment for optimal bone regeneration and reconstruction. Applied Materials Today, 2022, 27, 101465.	4.3	1
6	Enhancing mechanical and biological properties of biphasic calcium phosphate ceramics by adding calcium oxide. Journal of the American Ceramic Society, 2021, 104, 548-563.	3.8	9
7	The role of micro-vibration parameters in inflammatory responses of macrophages cultured on biphasic calcium phosphate ceramics and the resultant influence on osteogenic differentiation of mesenchymal stem cells. Journal of Materials Chemistry B, 2021, 9, 8003-8013.	5.8	7
8	The controlled release of a novel thiolated icariin for enhanced osteoporotic bone regeneration. Materials and Design, 2021, 200, 109468.	7.0	8
9	Machine learning on properties of multiscale multisource hydroxyapatite nanoparticles datasets with different morphologies and sizes. Npj Computational Materials, 2021, 7, .	8.7	19
10	Correlations between macrophage polarization and osteoinduction of porous calcium phosphate ceramics. Acta Biomaterialia, 2020, 103, 318-332.	8.3	85
11	Design of hydroxyapatite bioceramics with micro-/nano-topographies to regulate the osteogenic activities of bone morphogenetic protein-2 and bone marrow stromal cells. Nanoscale, 2020, 12, 7284-7300.	5.6	31
12	Joint construction of micro-vibration stimulation and BCP scaffolds for enhanced bioactivity and self-adaptability tissue engineered bone grafts. Journal of Materials Chemistry B, 2020, 8, 4278-4288.	5.8	16
13	Stereolithography-Based Additive Manufacturing of High-Performance Osteoinductive Calcium Phosphate Ceramics by a Digital Light-Processing System. ACS Biomaterials Science and Engineering, 2020, 6, 1787-1797.	5.2	60
14	Positive role of calcium phosphate ceramics regulated inflammation in the osteogenic differentiation of mesenchymal stem cells. Journal of Biomedical Materials Research - Part A, 2020, 108, 1305-1320.	4.0	11
15	<p>Nano-Hydroxyapatite Coating Promotes Porous Calcium Phosphate Ceramic-Induced Osteogenesis Via BMP/Smad Signaling Pathway</p> . International Journal of Nanomedicine, 2019, Volume 14, 7987-8000.	6.7	65
16	Regulation of surface micro/nano structure and composition of polyetheretherketone and their influence on the behavior of MC3T3-E1 pre-osteoblasts. Journal of Materials Chemistry B, 2019, 7, 5713-5724.	5.8	30
17	Healing of osteoporotic bone defects by micro-/nano-structured calcium phosphate bioceramics. Nanoscale, 2019, 11, 2721-2732.	5.6	38
18	Effects of hydroxyapatite surface nano/micro-structure on osteoclast formation and activity. Journal of Materials Chemistry B, 2019, 7, 7574-7587.	5.8	41

XUENING CHEN

#	Article	IF	CITATIONS
19	Osteoinductivity of Porous Biphasic Calcium Phosphate Ceramic Spheres with Nanocrystalline and Their Efficacy in Guiding Bone Regeneration. ACS Applied Materials & Interfaces, 2019, 11, 3722-3736.	8.0	62
20	Stabilization of Ca-deficient hydroxyapatite in biphasic calcium phosphate ceramics by adding alginate to enhance their biological performances. Journal of Materials Chemistry B, 2018, 6, 84-97.	5.8	36
21	Osteocytogenesis: Roles of Physicochemical Factors, Collagen Cleavage, and Exogenous Molecules. Tissue Engineering - Part B: Reviews, 2018, 24, 215-225.	4.8	27
22	A serum protein adsorption profile on BCP ceramics and influence of the elevated adsorption of adhesive proteins on the behaviour of MSCs. Journal of Materials Chemistry B, 2018, 6, 7383-7395.	5.8	17
23	Scaffold Structural Microenvironmental Cues to Guide Tissue Regeneration in Bone Tissue Applications. Nanomaterials, 2018, 8, 960.	4.1	129
24	Enhanced osteoinductivity of porous biphasic calcium phosphate ceramic beads with high content of strontium-incorporated calcium-deficient hydroxyapatite. Journal of Materials Chemistry B, 2018, 6, 6572-6584.	5.8	32
25	The directional migration and differentiation of mesenchymal stem cells toward vascular endothelial cells stimulated by biphasic calcium phosphate ceramic. International Journal of Energy Production and Management, 2018, 5, 129-139.	3.7	19
26	Calcium phosphate altered the cytokine secretion of macrophages and influenced the homing of mesenchymal stem cells. Journal of Materials Chemistry B, 2018, 6, 4765-4774.	5.8	44
27	Regulation of the secretion of immunoregulatory factors of mesenchymal stem cells (MSCs) by collagen-based scaffolds during chondrogenesis. Materials Science and Engineering C, 2017, 70, 983-991.	7.3	44
28	Comparison of ectopic bone formation process induced by four calcium phosphate ceramics in mice. Materials Science and Engineering C, 2017, 70, 1000-1010.	7.3	51
29	Role of biphasic calcium phosphate ceramic-mediated secretion of signaling molecules by macrophages in migration and osteoblastic differentiation of MSCs. Acta Biomaterialia, 2017, 51, 447-460.	8.3	76
30	Vascularization in Engineered Tissue Construct by Assembly of Cellular Patterned Micromodules and Degradable Microspheres. ACS Applied Materials & Interfaces, 2017, 9, 3524-3534.	8.0	23
31	Bone regeneration with micro/nano hybrid-structured biphasic calcium phosphate bioceramics at segmental bone defect and the induced immunoregulation of MSCs. Biomaterials, 2017, 147, 133-144.	11.4	134
32	Selective effect of hydroxyapatite nanoparticles on osteoporotic and healthy bone formation correlates with intracellular calcium homeostasis regulation. Acta Biomaterialia, 2017, 59, 338-350.	8.3	53
33	Fabrication and Properties of Ca-P Bioceramic Spherical Granules with Interconnected Porous Structure. ACS Biomaterials Science and Engineering, 2017, 3, 1557-1566.	5.2	41
34	A multi-level comparative analysis of human femoral cortical bone quality in healthy cadavers and surgical safe margin of osteosarcoma patients. Journal of the Mechanical Behavior of Biomedical Materials, 2017, 66, 111-118.	3.1	9
35	Gelatinizing technology combined with gas foaming to fabricate porous spherical hydroxyapatite bioceramic granules. Materials Letters, 2016, 185, 428-431.	2.6	17
36	The positive role of macrophage secretion stimulated by BCP ceramic in the ceramic-induced osteogenic differentiation of pre-osteoblasts via Smad-related signaling pathways. RSC Advances, 2016, 6, 102134-102141.	3.6	16

XUENING CHEN

#	Article	IF	CITATIONS
37	Administration duration influences the effects of lowâ€magnitude, highâ€frequency vibration on ovariectomized rat bone. Journal of Orthopaedic Research, 2016, 34, 1147-1157.	2.3	15
38	Roles of calcium phosphate-mediated integrin expression and MAPK signaling pathways in the osteoblastic differentiation of mesenchymal stem cells. Journal of Materials Chemistry B, 2016, 4, 2280-2289.	5.8	62
39	Bone mineral density, microarchitectural and mechanical alterations of osteoporotic rat bone under long-term whole-body vibration therapy. Journal of the Mechanical Behavior of Biomedical Materials, 2016, 53, 341-349.	3.1	22
40	Mechanical and biological properties of the micro-/nano-grain functionally graded hydroxyapatite bioceramics for bone tissue engineering. Journal of the Mechanical Behavior of Biomedical Materials, 2015, 48, 1-11.	3.1	66
41	Fabrication and cellular biocompatibility of porous carbonated biphasic calcium phosphate ceramics with a nanostructure. Acta Biomaterialia, 2009, 5, 134-143.	8.3	135
42	Preparation and cytocompatibility of chitosanâ€modified polylactide. Journal of Applied Polymer Science, 2008, 110, 408-412.	2.6	13