Andrew H A Clayton

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5354550/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Ligand-induced Dimer-Tetramer Transition during the Activation of the Cell Surface Epidermal Growth Factor Receptor-A Multidimensional Microscopy Analysis. Journal of Biological Chemistry, 2005, 280, 30392-30399.	3.4	232
2	Dynamic Fluorescence Anisotropy Imaging Microscopy inthe Frequency Domain (rFLIM). Biophysical Journal, 2002, 83, 1631-1649.	0.5	201
3	The Preparation of Colloidally Stable, Water-Soluble, Biocompatible, Semiconductor Nanocrystals with a Small Hydrodynamic Diameter. ACS Nano, 2009, 3, 1121-1128.	14.6	171
4	EGFR oligomerization organizes kinase-active dimers into competent signalling platforms. Nature Communications, 2016, 7, 13307.	12.8	146
5	Targeting of a Conformationally Exposed, Tumor-Specific Epitope of EGFR as a Strategy for Cancer Therapy. Cancer Research, 2012, 72, 2924-2930.	0.9	124
6	The influence of nanostructured materials on biointerfacial interactions. Advanced Drug Delivery Reviews, 2012, 64, 1820-1839.	13.7	108
7	A SOX9 Defect of Calmodulin-dependent Nuclear Import in Campomelic Dysplasia/Autosomal Sex Reversal. Journal of Biological Chemistry, 2003, 278, 33839-33847.	3.4	99
8	Experimental Determination of Quantum Dot Size Distributions, Ligand Packing Densities, and Bioconjugation Using Analytical Ultracentrifugation. Nano Letters, 2008, 8, 2883-2890.	9.1	95
9	Organization of Higher-Order Oligomers of the Serotonin1A Receptor Explored Utilizing Homo-FRET in Live Cells. Biophysical Journal, 2011, 100, 361-368.	0.5	95
10	Enumeration of Oligomerization States of Membrane Proteins in Living Cells by Homo-FRET Spectroscopy and Microscopy: Theory and Application. Biophysical Journal, 2007, 92, 3098-3104.	0.5	91
11	Compound Effects of Point Mutations Causing Campomelic Dysplasia/Autosomal Sex Reversal upon SOX9 Structure, Nuclear Transport, DNA Binding, and Transcriptional Activation. Journal of Biological Chemistry, 2001, 276, 27864-27872.	3.4	84
12	Through-Bond and Through-Space Coupling in Photoinduced Electron and Energy Transfer:Â AnabInitioand Semiempirical Study. The Journal of Physical Chemistry, 1996, 100, 10912-10918.	2.9	77
13	Predominance of activated EGFR higher-order oligomers on the cell surface. Growth Factors, 2008, 26, 316-324.	1.7	77
14	Unligated Epidermal Growth Factor Receptor Forms Higher Order Oligomers within Microclusters on A431 Cells That Are Sensitive to Tyrosine Kinase Inhibitor Binding. Biochemistry, 2007, 46, 4589-4597.	2.5	76
15	Exploring higher-order EGFR oligomerisation and phosphorylation—a combined experimental and theoretical approach. Molecular BioSystems, 2013, 9, 1849.	2.9	72
16	The architecture of EGFR's basal complexes reveals autoinhibition mechanisms in dimers and oligomers. Nature Communications, 2018, 9, 4325.	12.8	71
17	Antibodies specifically targeting a locally misfolded region of tumor associated EGFR. Proceedings of the United States of America, 2009, 106, 5082-5087.	7.1	69
18	Imaging the action of antimicrobial peptides on living bacterial cells. Scientific Reports, 2013, 3, 1557.	3.3	69

#	Article	IF	CITATIONS
19	Archetypal tryptophan-rich antimicrobial peptides: properties and applications. World Journal of Microbiology and Biotechnology, 2016, 32, 31.	3.6	67
20	Recruitment of adenomatous polyposis coli and β-catenin to axin-puncta. Oncogene, 2008, 27, 5808-5820.	5.9	63
21	Tryptophan Rotamer Distributions in Amphipathic Peptides at a Lipid Surface. Biophysical Journal, 1999, 76, 3235-3242.	0.5	56
22	Regulation of Actin Dynamics by Protein Kinase R Control of Gelsolin Enforces Basal Innate Immune Defense. Immunity, 2012, 36, 795-806.	14.3	54
23	Defective Calmodulin-Mediated Nuclear Transport of the Sex-Determining Region of the Y Chromosome (SRY) in XY Sex Reversal. Molecular Endocrinology, 2005, 19, 1884-1892.	3.7	52
24	On the rate of radiationless intermolecular energy transfer. Journal of Chemical Physics, 1992, 97, 7405-7413.	3.0	39
25	Temperature measurement in the microscopic regime: a comparison between fluorescence lifetime―and intensityâ€based methods. Journal of Microscopy, 2013, 250, 179-188.	1.8	38
26	Recruitment of the Adaptor Protein Grb2 to EGFR Tetramers. Biochemistry, 2014, 53, 2594-2604.	2.5	36
27	Site-specific tryptophan fluorescence spectroscopy as a probe of membrane peptide structure and dynamics. European Biophysics Journal, 2002, 31, 9-13.	2.2	34
28	Anti-biofilm and sporicidal activity of peptides based on wheat puroindoline and barley hordoindoline proteins. Journal of Peptide Science, 2016, 22, 492-500.	1.4	32
29	The structure and orientation of class-A amphipathic peptides on a phospholipid bilayer surface. European Biophysics Journal, 1999, 28, 133-141.	2.2	31
30	BioNetFit: a fitting tool compatible with BioNetGen, NFsim and distributed computing environments. Bioinformatics, 2016, 32, 798-800.	4.1	31
31	Antimicrobial peptides: biochemical determinants of activity and biophysical techniques of elucidating their functionality. World Journal of Microbiology and Biotechnology, 2018, 34, 62.	3.6	28
32	Evidence for extended YFP-EGFR dimers in the absence of ligand on the surface of living cells. Physical Biology, 2011, 8, 066002.	1.8	27
33	Aggregation Distributions on Cells Determined by Photobleaching Image Correlation Spectroscopy. Biophysical Journal, 2013, 104, 1056-1064.	0.5	26
34	Helixâ^'Helix Association of a Lipid-Bound Amphipathic α-Helix Derived from Apolipoprotein C-IIâ€. Biochemistry, 1999, 38, 10878-10884.	2.5	25
35	Fixation alters fluorescence lifetime and anisotropy of cells expressing EYFP-tagged serotonin1A receptor. Biochemical and Biophysical Research Communications, 2011, 405, 234-237.	2.1	23
36	The polarized AB plot for the frequencyâ€domain analysis and representation of fluorophore rotation and resonance energy homotransfer. Journal of Microscopy, 2008, 232, 306-312.	1.8	22

#	Article	IF	CITATIONS
37	Profilin Interaction with Phosphatidylinositol (4,5)-Bisphosphate Destabilizes the Membrane of Giant Unilamellar Vesicles. Biophysical Journal, 2009, 96, 5112-5121.	0.5	22
38	Structural Dynamics of a Lytic Peptide Interacting with a Supported Lipid Bilayer. Biophysical Journal, 2011, 100, 1353-1361.	0.5	22
39	Site-Specific Tryptophan Dynamics in Class A Amphipathic Helical Peptides at a Phospholipid Bilayer Interface. Biophysical Journal, 2000, 79, 1066-1073.	0.5	21
40	Slow Insertion Kinetics during Interaction of a Model Antimicrobial Peptide with Unilamellar Phospholipid Vesicles. Langmuir, 2012, 28, 2217-2224.	3.5	21
41	Revealing the sequence of interactions of PuroA peptide with Candida albicans cells by live-cell imaging. Scientific Reports, 2017, 7, 43542.	3.3	21
42	Ligand binding induces a conformational change in epidermal growth factor receptor dimers. Growth Factors, 2012, 30, 394-409.	1.7	20
43	Exploring oligomeric state of the serotonin _{1A} receptor utilizing photobleaching image correlation spectroscopy: implications for receptor function. Faraday Discussions, 2018, 207, 409-421.	3.2	20
44	Ultra-pure, water-dispersed Au nanoparticles produced by femtosecond laser ablation and fragmentation. International Journal of Nanomedicine, 2013, 8, 2601.	6.7	19
45	Taking Care of Bystander FRET in a Crowded Cell Membrane Environment. Biophysical Journal, 2014, 106, 1227-1228.	0.5	18
46	Get Your kICS by Measuring Membrane Protein Dynamics. Biophysical Journal, 2015, 109, 1-2.	0.5	18
47	Inhibiting EGFR Clustering and Cell Proliferation with Gold Nanoparticles. Small, 2015, 11, 1638-1643.	10.0	17
48	Dual-channel photobleaching FRET microscopy for improved resolution of protein association states in living cells. European Biophysics Journal, 2005, 34, 82-90.	2.2	16
49	Two conformers of a tyrosine kinase inhibitor (AG-1478) disclosed using simulated UV-Vis absorption spectroscopy. New Journal of Chemistry, 2016, 40, 8296-8304.	2.8	16
50	Differential and Synergistic Effects of Epidermal Growth Factor Receptor Antibodies on Unliganded ErbB Dimers and Oligomers. Biochemistry, 2011, 50, 3581-3590.	2.5	15
51	UV–Vis spectroscopy and solvatochromism of the tyrosine kinase inhibitor AG-1478. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2016, 164, 128-132.	3.9	14
52	Imaging Cellular Dynamics with Spectral Relaxation Imaging Microscopy: Distinct Spectral Dynamics in Golgi Membranes of Living Cells. Scientific Reports, 2016, 6, 37038.	3.3	13
53	Deep-UV fluorescence lifetime imaging microscopy. Photonics Research, 2015, 3, 283.	7.0	11
54	Plasmon-induced photoluminescence and Raman enhancement in Pr:CaF2 crystal by embedded silver nanoparticles. Applied Surface Science, 2020, 530, 147018.	6.1	11

#	Article	IF	CITATIONS
55	Long-Time-Scale Interaction Dynamics between a Model Antimicrobial Peptide and Giant Unilamellar Vesicles. Langmuir, 2013, 29, 14613-14621.	3.5	9
56	Fluorescence and analytical ultracentrifugation analyses of the interaction of the tyrosine kinase inhibitor, tyrphostin AG1478-mesylate, with albumin. Analytical Biochemistry, 2005, 342, 292-299.	2.4	8
57	Effects of Rationally Designed Physico-Chemical Variants of the Peptide PuroA on Biocidal Activity towards Bacterial and Mammalian Cells. International Journal of Molecular Sciences, 2020, 21, 8624.	4.1	8
58	Dynamic Cellular Cartography: Mapping the Local Determinants of Oligodendrocyte Transcription Factor 2 (OLIG2) Function in Live Cells Using Massively Parallel Fluorescence Correlation Spectroscopy Integrated with Fluorescence Lifetime Imaging Microscopy (mpFCS/FLIM). Analytical Chemistry, 2021, 93, 12011-12021.	6.5	8
59	Conformational Plasticity in Tyrosine Kinase Inhibitor–Kinase Interactions Revealed with Fluorescence Spectroscopy and Theoretical Calculations. Journal of Physical Chemistry B, 2018, 122, 4667-4679.	2.6	7
60	Conformational Dynamics in a Truncated Epidermal Growth Factor Receptor Ectodomain. Biochemistry, 2011, 50, 5130-5139.	2.5	6
61	Polarization of excitation light influences molecule counting in single-molecule localization microscopy. Histochemistry and Cell Biology, 2015, 143, 11-19.	1.7	6
62	Direct Measurement of Pore Dynamics and Leakage Induced by a Model Antimicrobial Peptide in Single Vesicles and Cells. Langmuir, 2016, 32, 6496-6505.	3.5	6
63	Fluorescence-based approaches for monitoring membrane receptor oligomerization. Journal of Biosciences, 2018, 43, 463-469.	1.1	6
64	In-cell structural dynamics of an EGF receptor during ligand-induced dimer–oligomer transition. European Biophysics Journal, 2020, 49, 21-37.	2.2	6
65	Red-Edge Excitation Shift Spectroscopy (REES): Application to Hidden Bound States of Ligands in Protein–Ligand Complexes. International Journal of Molecular Sciences, 2021, 22, 2582.	4.1	6
66	The transition from single molecule to ensemble revealed by fluorescence polarization Scientific Reports, 2015, 5, 8158.	3.3	5
67	Micro-solvation of tyrosine-kinase inhibitor AG1478 explored with fluorescence spectroscopy and computational chemistry. RSC Advances, 2017, 7, 31725-31735.	3.6	5
68	Uptake quantification of gold nanoparticles inside of cancer cells using high order image correlation spectroscopy. Biomedical Optics Express, 2021, 12, 539.	2.9	5
69	Determining complex aggregate distributions of macromolecules using photobleaching image correlation microscopy. AIMS Biophysics, 2015, 2, 1-7.	0.6	5
70	Creation and Biophysical Characterization of a High-Affinity, Monomeric EGF Receptor Ectodomain Using Fluorescent Proteins. Biochemistry, 2010, 49, 7459-7466.	2.5	4
71	Exploring the optical reporting characteristics of drugs: UV-Vis spectra and conformations of the tyrosine kinase inhibitor SKF86002. New Journal of Chemistry, 2017, 41, 14567-14573.	2.8	4
72	Solvatochromism and linear solvation energy relationship of the kinase inhibitor SKF86002. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2017, 170, 226-233.	3.9	4

#	Article	IF	CITATIONS
73	Deducing the Conformational Properties of a Tyrosine Kinase Inhibitor in Solution by Optical Spectroscopy and Computational Chemistry. Frontiers in Chemistry, 2020, 8, 596.	3.6	4
74	Unfolding of Class A Amphipathic Peptides on a Lipid Surfaceâ€. Biochemistry, 2003, 42, 1747-1753.	2.5	3
75	Analysis of complex anisotropy decays from single-frequency polarized-phasor ellipse plots. Methods and Applications in Fluorescence, 2016, 4, 024005.	2.3	3
76	A pH-induced conformational switch in a tyrosine kinase inhibitor identified by electronic spectroscopy and quantum chemical calculations. Scientific Reports, 2017, 7, 16271.	3.3	3
77	Confocal Microscopy Reveals Cell Surface Receptor Aggregation Through Image Correlation Spectroscopy. Journal of Visualized Experiments, 2018, , .	0.3	3
78	Interactions of a lytic peptide with supported lipid bilayers investigated by time-resolved evanescent wave-induced fluorescence spectroscopy. Methods and Applications in Fluorescence, 2016, 4, 044001.	2.3	2
79	The Effect of Nanoparticles on the Cluster Size Distributions of Activated EGFR Measured with Photobleaching Image Correlation Spectroscopy. Advances in Experimental Medicine and Biology, 2018, 1112, 41-52.	1.6	2
80	A Microfluidic Device for Spatiotemporal Delivery of Stimuli to Cells. AIMS Biophysics, 2015, 2, 58-72.	0.6	2
81	The Effect of Translational Motion on FLIM Measurements-Single Particle Phasor-FLIM. Journal of Fluorescence, 2013, 23, 671-679.	2.5	1
82	A Toolbox of Fluorescence Microscopic Approaches Reveals Dynamics and Assembly of a Membrane-Associated Protein. Biophysical Journal, 2013, 104, 1844-1845.	0.5	1
83	Spatiotemporal Control of Transmembrane Proteins through the Cytoskeleton: AnÂEvolving Story. Biophysical Journal, 2016, 110, 1036-1037.	0.5	1
84	Using fluorescence lifetime dequenching to estimate the average quinary stoichiometry of proteins in living cells. Methods and Applications in Fluorescence, 2020, 8, 014003.	2.3	1
85	Does frequency-dependent cell proliferation exhibit a Fano-type resonance?. Physical Biology, 2020, 17, 044001.	1.8	1
86	Cell Surface Receptors in the 21st Century. AIMS Biophysics, 2014, 1, 51-52.	0.6	1
87	pbICS microscopy technique for determining oligomeric state. , 2019, , .		1
88	Optical spectra and conformation pool of tyrosine kinase inhibitor PD153035 using a robust quantum mechanical conformation search. New Journal of Chemistry, 0, , .	2.8	1
89	Characterization of optical polarization converters made by femtosecond laser writing. , 2013, , .		0
90	A microfluidic device for studying cell signaling with multiple inputs and adjustable amplitudes and frequencies. Proceedings of SPIE, 2013, , .	0.8	0

#	Article	IF	CITATIONS
91	Solvent Relaxation in Golgi Membrane by Phasor-Flim Approach. Biophysical Journal, 2014, 106, 204a.	0.5	0

 $_{92}$ Gold Nanoparticles: Inhibiting EGFR Clustering and Cell Proliferation with Gold Nanoparticles (Small) Tj ETQq0 0 0 rgBT/Overlock 10 Tf $_{100}^{50}$

93	SpIDA Surveys the Intricate Web of Macromolecular Oligomerization In Situ. Biophysical Journal, 2015, 109, 663-664.	0.5	0
94	Multidimensional Microscopy: Application to Membrane Protein Structure. Springer Series in Biophysics, 2017, , 91-111.	0.4	0
95	Structural and Spectroscopic Study of the Tyrosine Kinase Inhibitor PD-153035. Biophysical Journal, 2019, 116, 568a.	0.5	0
96	Spectroscopic and Microscopic Approaches for Investigating the Dynamic Interactions of Anti-microbial Peptides With Membranes and Cells. Frontiers in Medical Technology, 2020, 2, 628552.	2.5	0