
Zhongbiao Tan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5354277/publications.pdf Version: 2024-02-01

ΖΗΟΝΟΒΙΛΟ ΤΛΝ

#	Article	IF	CITATIONS
1	Biodiesel production from soybean oil deodorizer distillate usingcalcined duck eggshell as catalyst. Energy Conversion and Management, 2016, 112, 199-207.	9.2	96
2	Characterization of a Novel Alginate Lyase from Marine Bacterium Vibrio furnissii H1. Marine Drugs, 2018, 16, 30.	4.6	31
3	Construction and characterization of bifunctional cellulases: Caldicellulosiruptor-sourced endoglucanase, CBM, and exoglucanase for efficient degradation of lignocellulose. Biochemical Engineering Journal, 2019, 151, 107363.	3.6	27
4	Improving the thermostability of a mesophilic family 10 xylanase, AuXyn10A, from <i>Aspergillus usamii</i> by in silico design. Journal of Industrial Microbiology and Biotechnology, 2014, 41, 1217-1225.	3.0	22
5	Cloning and sequence analysis of an acidophilic xylanase (XynI) gene from Aspergillus usamii E001. World Journal of Microbiology and Biotechnology, 2011, 27, 831-839.	3.6	20
6	High-level heterologous expression of an alkaline lipase gene from Penicillium cyclopium PG37 in Pichia pastoris. World Journal of Microbiology and Biotechnology, 2011, 27, 2767-2774.	3.6	20
7	Improved lignocellulose degradation efficiency by fusion of β-glucosidase, exoglucanase, and carbohydrate-binding module from Caldicellulosiruptor saccharolyticus. BioResources, 2019, 14, 6767-6780.	1.0	17
8	Expanding the Biocatalytic Scope of Enzyme-Loaded Polymeric Hydrogels. Gels, 2021, 7, 194.	4.5	15
9	Nanomaterial-immobilized lipases for sustainable recovery of biodiesel – A review. Fuel, 2022, 316, 123429.	6.4	15
10	Enhancing the Thermostability of a Cold-Active Lipase from Penicillium cyclopium by In Silico Design of a Disulfide Bridge. Applied Biochemistry and Biotechnology, 2014, 173, 1752-1764.	2.9	13
11	Immobilization of a cold-adaptive recombinant Penicillium cyclopium lipase on modified palygorskite for biodiesel preparation. Biomass Conversion and Biorefinery, 2022, 12, 5317-5328.	4.6	8
12	Enhancing the methanol tolerance of Candida antarctica lipase B by saturation mutagenesis for biodiesel preparation. 3 Biotech, 2022, 12, 22.	2.2	7
13	Digging and identification of novel microorganisms from the soil environments with high methanol-tolerant lipase production for biodiesel preparation. Environmental Research, 2022, 212, 113570.	7.5	5
14	Exploration of Disulfide Bridge and N-Glycosylation Contributing to High Thermostability of a Hybrid Xylanase. Protein and Peptide Letters, 2014, 21, 657-662.	0.9	2
15	Characterization of a xyloglucananse in biodegradation of woody plant xyloglucan from Caldicellulosiruptor kronotskyensis. BioResources, 2022, 17, 673-681.	1.0	1