Gelareh Momen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5354159/publications.pdf

Version: 2024-02-01

279798 254184 1,910 49 23 43 citations h-index g-index papers 49 49 49 1575 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Development of a dual capsule selfâ€healing silicone composite using silicone chemistry and poly(melamineâ€ureaâ€formaldehyde) shells. Journal of Applied Polymer Science, 2022, 139, 51670.	2.6	2
2	On the icephobicity of damage-tolerant superhydrophobic bulk nanocomposites. Soft Matter, 2022, 18, 412-424.	2.7	5
3	Superhydrophobic and icephobic polyurethane coatings: Fundamentals, progress, challenges and opportunities. Progress in Organic Coatings, 2022, 165, 106715.	3.9	22
4	Transparent non-fluorinated superhydrophobic coating with enhanced anti-icing performance. Progress in Organic Coatings, 2022, 165, 106758.	3.9	25
5	Aircraft Anti-Icing Fluids Endurance Under Natural and Artificial Snow: a Comparative Study. International Review of Aerospace Engineering, 2022, 15, 1.	0.3	1
6	Superhydrophobic micro-nanofibers from PHBV-SiO2 biopolymer composites produced by electrospinning. Functional Composite Materials, 2022, 3, .	1.4	3
7	Design strategies for antiviral coatings and surfaces: A review. Applied Surface Science Advances, 2022, 8, 100224.	6.8	17
8	Formulation of nanohybrid coating based on essential oil and fluoroalkyl silane for antibacterial superhydrophobic surfaces. Applied Surface Science Advances, 2022, 9, 100252.	6.8	9
9	One-step fabrication of superhydrophobic nanocomposite with superior anticorrosion performance. Progress in Organic Coatings, 2022, 169, 106918.	3.9	6
10	Performance of a nanotextured superhydrophobic coating developed for high-voltage outdoor porcelain insulators. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 649, 129461.	4.7	16
11	A non-fluorinated mechanochemically robust volumetric superhydrophobic nanocomposite. Journal of Materials Science and Technology, 2021, 66, 213-225.	10.7	15
12	Icephobicity and durability assessment of superhydrophobic surfaces: The role of surface roughness and the ice adhesion measurement technique. Journal of Materials Processing Technology, 2021, 288, 116883.	6.3	56
13	Recent progress in the anti-icing performance of slippery liquid-infused surfaces. Progress in Organic Coatings, 2021, 151, 106096.	3.9	43
14	Potential use of smart coatings for icephobic applications: A review. Surface and Coatings Technology, 2021, 424, 127656.	4.8	30
15	Icephobic properties of aqueous self-lubricating coatings containing PEG-PDMS copolymers. Progress in Organic Coatings, 2021, 161, 106466.	3.9	19
16	A Multi-Tool Analysis to Assess the Effectiveness of Passive Ice Protection Materials to Assist Rotorcraft Manual De-Icing. Applied Sciences (Switzerland), 2021, 11, 11847.	2.5	3
17	A comparative study of the icephobic and self-cleaning properties of Teflon materials having different surface morphologies. Journal of Materials Processing Technology, 2020, 276, 116415.	6.3	42
18	Performance improvement of EPDM and EPDM/Silicone rubber composites using modified fumed silica, titanium dioxide and graphene additives. Polymer Testing, 2020, 84, 106281.	4.8	53

#	Article	IF	Citations
19	Enhancement in electrical and thermal performance of highâ€temperature vulcanized silicone rubber composites for outdoor insulating applications. Journal of Applied Polymer Science, 2020, 137, 49514.	2.6	10
20	Evaluating the effect of processing parameters on the replication quality in the micro compression molding of silicone rubber. Materials and Manufacturing Processes, 2020, 35, 1567-1575.	4.7	9
21	Potential anti-icing applications of encapsulated phase change material–embedded coatings; a review. Journal of Energy Storage, 2020, 31, 101638.	8.1	24
22	Mechanisms of ice formation and propagation on superhydrophobic surfaces: A review. Advances in Colloid and Interface Science, 2020, 279, 102155.	14.7	74
23	Advances in the Fabrication of Superhydrophobic Polymeric Surfaces by Polymer Molding Processes. Industrial & Description of Superhydrophobic Polymeric Surfaces by Polymer Molding Processes. Industrial & Description of Superhydrophobic Polymeric Surfaces by Polymer Molding Processes.	3.7	49
24	Fabrication of icephobic aluminium surfaces by atmospheric plasma jet polymerisation. Surface Engineering, 2019, 35, 450-455.	2.2	23
25	Evaluation of atmospheric-pressure plasma parameters to achieve superhydrophobic and self-cleaning HTV silicone rubber surfaces via a single-step, eco-friendly approach. Surface and Coatings Technology, 2019, 375, 100-111.	4.8	38
26	Dispersing graphene in aqueous media: Investigating the effect of different surfactants. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 582, 123870.	4.7	43
27	Rigorous testing to assess the self-cleaning properties of an ultra-water-repellent silicone rubber surface. Surface and Coatings Technology, 2019, 374, 557-568.	4.8	24
28	Recent progress and challenges with 3D printing of patterned hydrophobic and superhydrophobic surfaces. International Journal of Advanced Manufacturing Technology, 2019, 103, 1225-1238.	3.0	64
29	Application of superhydrophobic coatings as a corrosion barrier: A review. Surface and Coatings Technology, 2018, 341, 40-56.	4.8	413
30	Wetting and Self-Cleaning Properties of Silicone Rubber Surfaces Treated by Atmospheric Plasma Jet. , 2018, , .		3
31	Micro-Nanostructured Silicone Rubber Surfaces Using Compression Molding. Materials Science Forum, 2018, 941, 1802-1807.	0.3	5
32	Micro-Nanostructured Silicone Surfaces for Highvoltage Application. , 2018, , .		2
33	Simple Fabrication of Superhydrophobic Surfaces Using Atmospheric-Pressure Plasma. Materials Science Forum, 2018, 941, 1808-1814.	0.3	6
34	Superhydrophobic and Highly Oleophilic Polystyrene Fibers (PS) with Delayed Freezing Time and Effective Oil Adsorption. Materials Science Forum, 2018, 941, 2232-2236.	0.3	0
35	Direct replication of micro-nanostructures in the fabrication of superhydrophobic silicone rubber surfaces by compression molding. Applied Surface Science, 2018, 458, 619-628.	6.1	72
36	Micro-nanostructured polymer surfaces using injection molding: A review. Materials Today Communications, 2017, 13, 126-143.	1.9	119

3

#	Article	IF	Citations
37	Properties and applications of superhydrophobic coatings in high voltage outdoor insulation: A review. IEEE Transactions on Dielectrics and Electrical Insulation, 2017, 24, 3630-3646.	2.9	55
38	Development of a Stable TiO ₂ Nanocomposite Self-Cleaning Coating for Outdoor Applications. Advances in Materials Science and Engineering, 2016, 2016, 1-8.	1.8	15
39	Durability enhancement of icephobic fluoropolymer film. Journal of Coatings Technology Research, 2016, 13, 405-412.	2.5	37
40	Ice repellency behaviour of superhydrophobic surfaces: Effects of atmospheric icing conditions and surface roughness. Applied Surface Science, 2015, 349, 211-218.	6.1	108
41	Facile approach in the development of icephobic hierarchically textured coatings as corrosion barrier. Applied Surface Science, 2014, 299, 41-46.	6.1	64
42	Effect of filler concentration on dielectric properties of RTV silicone rubber/TiO $<$ inf $>$ 2 $<$ /inf $>$ nanocomposite. , 2013, , .		1
43	A ZnO-based nanocomposite coating with ultra water repellent properties. Applied Surface Science, 2012, 258, 5723-5728.	6.1	46
44	Simple process to fabricate a superhydrophobic coating. Micro and Nano Letters, 2011, 6, 405.	1.3	22
45	Wettability behaviour of RTV silicone rubber coated on nanostructured aluminium surface. Applied Surface Science, 2011, 257, 6489-6493.	6.1	74
46	On the effect of process temperature on the performance of activated carbon bed hydrogen storage tank. International Journal of Thermal Sciences, 2010, 49, 1468-1476.	4.9	16
47	Experimental and numerical investigation of the thermal effects during hydrogen charging in packed bed storage tank. International Journal of Heat and Mass Transfer, 2009, 52, 1495-1503.	4.8	27
48	Hydrogen storage in an activated carbon bed: Effect of energy release on storage capacity of the tank. International Journal of Hydrogen Energy, 2009, 34, 3799-3809.	7.1	15
49	Hydrogen storage by adsorption on activated carbon: Investigation of the thermal effects during the charging process. International Journal of Hydrogen Energy, 2007, 32, 1542-1553.	7.1	85