Adele L Boskey

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5353999/publications.pdf

Version: 2024-02-01

305 papers 22,181 citations

4960 84 h-index 135 g-index

314 all docs

314 docs citations

314 times ranked

17940 citing authors

#	Article	IF	CITATIONS
1	The regulatory role of matrix proteins in mineralization of bone. , 2021, , 165-187.		2
2	Skin Ultrasound Measurement as a Potential Marker of Bone Quality: A Prospective Pilot Study of Patients undergoing Lumbar Spinal Fusion. Journal of Orthopaedic Research, 2019, 37, 2508-2515.	2.3	6
3	A Multicenter Observational Cohort Study to Evaluate the Effects of Bisphosphonate Exposure on Bone Mineral Density and Other Health Outcomes in Osteogenesis Imperfecta. JBMR Plus, 2019, 3, e10118.	2.7	22
4	Crystallinity of hydroxyapatite drives myofibroblastic activation and calcification in aortic valves. Acta Biomaterialia, 2018, 71, 24-36.	8.3	27
5	Biomolecular regulation, composition and nanoarchitecture of bone mineral. Scientific Reports, 2018, 8, 1191.	3.3	61
6	Mineralization in Mammals., 2018,, 383-403.		1
7	Osteoblast migration in vertebrate bone. Biological Reviews, 2018, 93, 350-363.	10.4	41
8	Side-Effects of Convulsive Seizures and Anti-Seizure Therapy on Bone in a Rat Model of Epilepsy. Applied Spectroscopy, 2018, 72, 689-705.	2.2	11
9	Dynamic structure and composition of bone investigated by nanoscale infrared spectroscopy. PLoS ONE, 2018, 13, e0202833.	2.5	28
10	Variables Reflecting the Mineralization of Bone Tissue From Fracturing Versus Nonfracturing Postmenopausal Nonosteoporotic Women. JBMR Plus, 2018, 2, 323-327.	2.7	7
11	Shoulder Lesion in a 69 Year Old Woman. Journal of Long-Term Effects of Medical Implants, 2018, 28, 47-53.	0.7	1
12	Compositional mapping of the mature anterior cruciate ligamentâ€toâ€bone insertion. Journal of Orthopaedic Research, 2017, 35, 2513-2523.	2.3	24
13	Zoledronic acid improves bone histomorphometry in a murine model of Rett syndrome. Bone, 2017, 99, 1-7.	2.9	6
14	Altered Bone Mechanics, Architecture and Composition in the Skeleton of TIMP-3-Deficient Mice. Calcified Tissue International, 2017, 100, 631-640.	3.1	13
15	Examining tissue composition, whole-bone morphology and mechanical behavior of GorabPrx1 mice tibiae: A mouse model of premature aging. Journal of Biomechanics, 2017, 65, 145-153.	2.1	21
16	Phosphorylation regulates the secondary structure and function of dentin phosphoprotein peptides. Bone, 2017, 95, 65-75.	2.9	18
17	Bone quality changes associated with aging and disease: a review. Annals of the New York Academy of Sciences, 2017, 1410, 93-106.	3.8	96
18	Enhanced Wnt signaling improves bone mass and strength, but not brittleness, in the Colla1 +/mov13 mouse model of type I Osteogenesis Imperfecta. Bone, 2016, 90, 127-132.	2.9	18

#	Article	IF	CITATIONS
19	Lack of hepcidin ameliorates anemia and improves growth in an adenine-induced mouse model of chronic kidney disease. American Journal of Physiology - Renal Physiology, 2016, 311, F877-F889.	2.7	40
20	Effects of Drugs on Bone Quality. Clinical Reviews in Bone and Mineral Metabolism, 2016, 14, 167-196.	0.8	6
21	The Effect of Stontium Ranelate on Fracture Reduction in Osteogenesis Imperfecta is Comparable to Recent Bisphosphonate Data. Journal of Bone and Mineral Research, 2016, 31, 2065-2065.	2.8	0
22	Bone mineral properties in growing Colla2+/G610C mice, an animal model of osteogenesis imperfecta. Bone, 2016, 87, 120-129.	2.9	29
23	Examining the Relationships Between Bone Tissue Composition, Compositional Heterogeneity, and Fragility Fracture: A Matched Case-Controlled FTIRI Study. Journal of Bone and Mineral Research, 2016, 31, 1070-1081.	2.8	77
24	Accelerated enamel mineralization in Dspp mutant mice. Matrix Biology, 2016, 52-54, 246-259.	3.6	24
25	Intrinsically disordered proteins and biomineralization. Matrix Biology, 2016, 52-54, 43-59.	3.6	115
26	Evidence of altered matrix composition in iliac crest biopsies from patients with idiopathic juvenile osteoporosis. Connective Tissue Research, 2016, 57, 28-37.	2.3	17
27	Factors Contributing to Atypical Femoral Fractures. , 2016, , 125-136.		1
28	Fourier Transform Infrared Spectroscopic Imaging of Fracture Healing in the Normal Mouse. Journal of Spectroscopy, 2015, 2015, 1-12.	1.3	5
29	Are Changes in Composition in Response to Treatment of a Mouse Model of Osteogenesis Imperfecta Sex-dependent?. Clinical Orthopaedics and Related Research, 2015, 473, 2587-2598.	1.5	20
30	Effect of in vivo loading on bone composition varies with animal age. Experimental Gerontology, 2015, 63, 48-58.	2.8	20
31	The effect of osteoporosis treatments on fatigue properties of cortical bone tissue. Bone Reports, 2015, 2, 8-13.	0.4	24
32	Osteoblast function and bone histomorphometry in a murine model of Rett syndrome. Bone, 2015, 76, 23-30.	2.9	15
33	Mineralized Tissue. , 2014, , 31-43.		3
34	The role of phosphorylation in dentin phosphoprotein peptide absorption to hydroxyapatite surfaces: a molecular dynamics study. Connective Tissue Research, 2014, 55, 134-137.	2.3	16
35	Ultrastructural organization of dentin in mice lacking dentin sialo-phosphoprotein. Connective Tissue Research, 2014, 55, 92-96.	2.3	7
36	FTIR-I Compositional Mapping of the Cartilage-to-Bone Interface as a Function of Tissue Region and Age. Journal of Bone and Mineral Research, 2014, 29, 2643-2652.	2.8	69

3

#	Article	IF	Citations
37	CORR Insights \hat{A}° : Fractures in Geriatric Mice Show Decreased Callus Expansion and Bone Volume. Clinical Orthopaedics and Related Research, 2014, 472, 3533-3535.	1.5	O
38	Vibrational Spectroscopic Imaging for the Evaluation of Matrix and Mineral Chemistry. Current Osteoporosis Reports, 2014, 12, 454-464.	3.6	61
39	Studying Variations in Bone Composition at Nano-Scale Resolution: A Preliminary Report. Calcified Tissue International, 2014, 95, 413-418.	3.1	30
40	Reduced Tissue-Level Stiffness and Mineralization in Osteoporotic Cancellous Bone. Calcified Tissue International, 2014, 95, 125-131.	3.1	41
41	Using 2D correlation analysis to enhance spectral information available from highly spatially resolved AFM-IR spectra. Journal of Molecular Structure, 2014, 1069, 284-289.	3.6	26
42	Molecular Imaging of Expression of Vascular Endothelial Growth Factor a (VEGF A) in Femoral Bone Grafts Transplanted into Living Mice. Cell Transplantation, 2014, 23, 901-912.	2.5	2
43	The Regulatory Role of Matrix Proteins in Mineralization of Bone. , 2013, , 235-255.		16
44	Natural and Synthetic Hydroxyapatites. , 2013, , 151-161.		7
45	Fourier transform infrared imaging of femoral neck bone: Reduced heterogeneity of mineral-to-matrix and carbonate-to-phosphate and more variable crystallinity in treatment-naive fracture cases compared with fracture-free controls. Journal of Bone and Mineral Research, 2013, 28, 150-161.	2.8	75
46	The kidney sodium–phosphate co-transporter alters bone quality in an age and gender specific manner. Bone, 2013, 53, 546-553.	2.9	3
47	Age-related CXC chemokine receptor-4-deficiency impairs osteogenic differentiation potency of mouse bone marrow mesenchymal stromal stem cells. International Journal of Biochemistry and Cell Biology, 2013, 45, 1813-1820.	2.8	43
48	Fourier Transform Infrared Spectroscopic Imaging Parameters Describing Acid Phosphate Substitution in Biologic Hydroxyapatite. Calcified Tissue International, 2013, 92, 418-428.	3.1	74
49	Variations in nanomechanical properties and tissue composition within trabeculae from an ovine model of osteoporosis and treatment. Bone, 2013, 52, 326-336.	2.9	49
50	Notch Signaling in Osteocytes Differentially Regulates Cancellous and Cortical Bone Remodeling. Journal of Biological Chemistry, 2013, 288, 25614-25625.	3.4	87
51	Mineral and Matrix Changes in Brtl/ + Teeth Provide Insights into Mineralization Mechanisms. BioMed Research International, 2013, 2013, 1-9.	1.9	14
52	ADAM17 Controls Endochondral Ossification by Regulating Terminal Differentiation of Chondrocytes. Molecular and Cellular Biology, 2013, 33, 3077-3090.	2.3	47
53	Inflammatory Cytokines Induce a Unique Mineralizing Phenotype in Mesenchymal Stem Cells Derived from Human Bone Marrow. Journal of Biological Chemistry, 2013, 288, 29494-29505.	3.4	55
54	A Mouse Model for Human Osteogenesis Imperfecta Type VI. Journal of Bone and Mineral Research, 2013, 28, 1531-1536.	2.8	47

#	Article	IF	CITATIONS
55	Heat and radiofrequency plasma glow discharge pretreatment of a titanium alloy: Eveidence for enhanced osteoinductive properties. Journal of Cellular Biochemistry, 2013, 114, 1917-1927.	2.6	11
56	The effects of GATAâ€1 and NFâ€E2 deficiency on bone biomechanical, biochemical, and mineral properties. Journal of Cellular Physiology, 2013, 228, 1594-1600.	4.1	14
57	Bone composition: relationship to bone fragility and antiosteoporotic drug effects. BoneKEy Reports, 2013, 2, 447.	2.7	284
58	Quantitative Mapping of Matrix Content and Distribution across the Ligament-to-Bone Insertion. PLoS ONE, 2013, 8, e74349.	2.5	63
59	Dilatational band formation in bone. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 19178-19183.	7.1	234
60	Osteogenic Effect of High-frequency Acceleration on Alveolar Bone. Journal of Dental Research, 2012, 91, 413-419.	5.2	45
61	High- and low-dose OPG–Fc cause osteopetrosis-like changes in infant mice. Pediatric Research, 2012, 72, 495-501.	2.3	20
62	Chondrogenic ATDC5 cells: An optimised model for rapid and physiological matrix mineralisation. International Journal of Molecular Medicine, 2012, 30, 1187-1193.	4.0	63
63	Improved prediction of rat cortical bone mechanical behavior using composite beam theory to integrate tissue level properties. Journal of Biomechanics, 2012, 45, 2784-2790.	2.1	11
64	Atypical subtrochanteric femoral shaft fractures: role for mechanics and bone quality. Arthritis Research and Therapy, 2012, 14, 220.	3.5	37
65	Rediscovering hydrogel-based double-diffusion systems for studying biomineralization. CrystEngComm, 2012, 14, 5681.	2.6	33
66	Post-translational modification of osteopontin: Effects on in vitro hydroxyapatite formation and growth. Biochemical and Biophysical Research Communications, 2012, 419, 333-338.	2.1	61
67	Regulatory role of stromal cell-derived factor-1 in bone morphogenetic protein-2-induced chondrogenic differentiation in vitro. International Journal of Biochemistry and Cell Biology, 2012, 44, 1825-1833.	2.8	26
68	Comparison of bone tissue properties in mouse models with collagenous and non-collagenous genetic mutations using FTIRI. Bone, 2012, 51, 920-928.	2.9	33
69	Bone tissue composition varies across anatomic sites in the proximal femur and the iliac crest. Journal of Orthopaedic Research, 2012, 30, 700-706.	2.3	44
70	Reduced cortical bone compositional heterogeneity with bisphosphonate treatment in postmenopausal women with intertrochanteric and subtrochanteric fractures. Journal of Bone and Mineral Research, 2012, 27, 672-678.	2.8	188
71	Comparable outcomes in fracture reduction and bone properties with RANKL inhibition and alendronate treatment in a mouse model of osteogenesis imperfecta. Osteoporosis International, 2012, 23, 1141-1150.	3.1	47
72	MicroCT morphometry analysis of mouse cancellous bone: Intra- and inter-system reproducibility. Bone, 2011, 49, 580-587.	2.9	49

#	Article	IF	CITATIONS
73	Loss of transcription factor early growth response gene 1 results in impaired endochondral bone repair. Bone, 2011, 49, 743-752.	2.9	26
74	Lathyrism-induced alterations in collagen cross-links influence the mechanical properties of bone material without affecting the mineral. Bone, 2011, 49, 1232-1241.	2.9	112
75	Dentin structure composition and mineralization. Frontiers in Bioscience - Elite, 2011, E3, 711-735.	1.8	504
76	Early Growth Response Gene 1 Regulates Bone Properties in Mice. Calcified Tissue International, 2011, 89, 1-9.	3.1	11
77	Infrared Assessment of Bone Quality: A Review. Clinical Orthopaedics and Related Research, 2011, 469, 2170-2178.	1.5	172
78	Bone Quality: From Bench to Bedside: Opening Editorial Comment. Clinical Orthopaedics and Related Research, 2011, 469, 2087-2089.	1.5	6
79	COL1 C-propeptide cleavage site mutations cause high bone mass osteogenesis imperfecta. Human Mutation, 2011, 32, 598-609.	2.5	119
80	Changes in matrix protein gene expression associated with mineralization in the differentiating chick limbâ€bud micromass culture system. Journal of Cellular Biochemistry, 2011, 112, 607-613.	2.6	6
81	Microstructure and nanomechanical properties in osteons relate to tissue and animal age. Journal of Biomechanics, 2011, 44, 277-284.	2.1	63
82	Expression of Dentin Sialophosphoprotein in Non-mineralized Tissues. Journal of Histochemistry and Cytochemistry, 2011, 59, 1009-1021.	2.5	36
83	Fourier Transform Infrared Imaging Analysis of Cancellous Bone in Alendronate- and Raloxifene-Treated Osteopenic Sheep. Cells Tissues Organs, 2011, 194, 302-306.	2.3	6
84	Expression of Phosphophoryn Is Sufficient for the Induction of Matrix Mineralization by Mammalian Cells. Journal of Biological Chemistry, 2011, 286, 20228-20238.	3.4	20
85	Conditional Inactivation of the CXCR4 Receptor in Osteoprecursors Reduces Postnatal Bone Formation Due to Impaired Osteoblast Development. Journal of Biological Chemistry, 2011, 286, 26794-26805.	3.4	82
86	Mineralization., 2011,, 381-401.		5
87	Imaging of Alkaline Phosphatase Activity in Bone Tissue. PLoS ONE, 2011, 6, e22608.	2.5	21
88	Processing of type I collagen gels using nonenzymatic glycation. Journal of Biomedical Materials Research - Part A, 2010, 93A, 843-851.	4.0	66
89	Effects of tissue age on bone tissue material composition and nanomechanical properties in the rat cortex. Journal of Biomedical Materials Research - Part A, 2010, 92A, 1048-1056.	4.0	135
90	Bone loss caused by iron overload in a murine model: importance of oxidative stress. Blood, 2010, 116, 2582-2589.	1.4	269

#	Article	IF	CITATIONS
91	MEPE's Diverse Effects on Mineralization. Calcified Tissue International, 2010, 86, 42-46.	3.1	54
92	Changes in Bone Microarchitecture and Biomechanical Properties in the th3 Thalassemia Mouse are Associated with Decreased Bone Turnover and Occur During the Period of Bone Accrual. Calcified Tissue International, 2010, 86, 484-494.	3.1	28
93	Contribution of Mineral to Bone Structural Behavior and Tissue Mechanical Properties. Calcified Tissue International, 2010, 87, 450-460.	3.1	118
94	The role of apoptosis in mineralizing murine versus avian micromass culture systems. Journal of Cellular Biochemistry, 2010, 111, 653-658.	2.6	6
95	Adenosine A ₁ receptors regulate bone resorption in mice: Adenosine A ₁ receptor blockade or deletion increases bone density and prevents ovariectomyâ€induced bone loss in adenosine A ₁ receptor–knockout mice. Arthritis and Rheumatism, 2010, 62, 534-541.	6.7	79
96	Influence of boneâ€derived matrices on generation of bone in an ectopic rat model. Journal of Orthopaedic Research, 2010, 28, 664-670.	2.3	7
97	Regulating in vivo calcification of alginate microbeads. Biomaterials, 2010, 31, 4926-4934.	11.4	52
98	Endogenous glucocorticoids decrease skeletal angiogenesis, vascularity, hydration, and strength in aged mice. Aging Cell, 2010, 9, 147-161.	6.7	246
99	The Biochemistry of Bone. , 2010, , 3-13.		1
100	Different Forms of DMP1 Play Distinct Roles in Mineralization. Journal of Dental Research, 2010, 89, 355-359.	5.2	84
101	RANKL Inhibition Improves Bone Properties in a Mouse Model of Osteogenesis Imperfecta. Connective Tissue Research, 2010, 51, 123-131.	2.3	34
102	Production of VEGF receptor 1 and 2 mRNA and protein during endochondral bone repair is differential and healing phase specific. Journal of Applied Physiology, 2010, 109, 1930-1938.	2.5	11
103	Calcification in a Case of Circumscribed Myositis Ossificans: Figure 1 Journal of Rheumatology, 2010, 37, 876-876.	2.0	4
104	Aging and Bone. Journal of Dental Research, 2010, 89, 1333-1348.	5.2	408
105	Stromal derived factor-1 regulates bone morphogenetic protein 2-induced osteogenic differentiation of primary mesenchymal stem cells. International Journal of Biochemistry and Cell Biology, 2010, 42, 1132-1141.	2.8	125
106	Bisphosphonate treatment modifies canine bone mineral and matrix properties and their heterogeneity. Bone, 2010, 46, 666-672.	2.9	106
107	Pro416Arg cherubism mutation in Sh3bp2 knock-in mice affects osteoblasts and alters bone mineral and matrix properties. Bone, 2010, 46, 1306-1315.	2.9	17
108	Effect of HIP/ribosomal protein L29 deficiency on mineral properties of murine bones and teeth. Bone, 2010, 47, 93-101.	2.9	8

#	Article	IF	Citations
109	Differentiation and mineralization of murine mesenchymal C3H10T1/2 cells in micromass culture. Differentiation, 2010, 79, 211-217.	1.9	15
110	The effect of lead on bone mineral properties from female adult C57/BL6 mice. Bone, 2010, 47, 888-894.	2.9	54
111	Genetic Variation in Mouse Femoral Tissue-Level Mineral Content Underlies Differences in Whole Bone Mechanical Properties. Cells Tissues Organs, 2009, 189, 237-240.	2.3	10
112	The PHEX Transgene Corrects Mineralization Defects in 9-Month-Old Hypophosphatemic Mice. Calcified Tissue International, 2009, 84, 126-137.	3.1	26
113	Ablation of Cathepsin K Activity in the Young Mouse Causes Hypermineralization of Long Bone and Growth Plates. Calcified Tissue International, 2009, 84, 229-239.	3.1	30
114	Characterization of Dystrophic Calcification Induced in Mice by Cardiotoxin. Calcified Tissue International, 2009, 85, 267-275.	3.1	28
115	Spectroscopic markers of bone quality in alendronate-treated postmenopausal women. Osteoporosis International, 2009, 20, 793-800.	3.1	123
116	Spatial Variation in Osteonal Bone Properties Relative to Tissue and Animal Age. Journal of Bone and Mineral Research, 2009, 24, 1271-1281.	2.8	104
117	Introduction of a Phe377del Mutation in ANK Creates a Mouse Model for Craniometaphyseal Dysplasia. Journal of Bone and Mineral Research, 2009, 24, 1206-1215.	2.8	39
118	Use of FTIR Spectroscopic Imaging to Identify Parameters Associated With Fragility Fracture. Journal of Bone and Mineral Research, 2009, 24, 1565-1571.	2.8	171
119	Decorin modulates collagen matrix assembly and mineralization. Matrix Biology, 2009, 28, 44-52.	3.6	110
120	Fourier Transform Infrared Imaging Microspectroscopy and Tissue-Level Mechanical Testing Reveal Intraspecies Variation in Mouse Bone Mineral and Matrix Composition. Calcified Tissue International, 2008, 83, 342-353.	3.1	43
121	Nonâ€enzymatic glycation of chondrocyteâ€seeded collagen gels for cartilage tissue engineering. Journal of Orthopaedic Research, 2008, 26, 1434-1439.	2.3	36
122	Signaling in response to hypoxia and normoxia in the intervertebral disc. Arthritis and Rheumatism, 2008, 58, 3637-3639.	6.7	15
123	Dissection of the osteogenic effects of laminin-332 utilizing specific LG domains: LG3 induces osteogenic differentiation, but not mineralization. Experimental Cell Research, 2008, 314, 763-773.	2.6	27
124	Modulation of extracellular matrix protein phosphorylation alters mineralization in differentiating chick limb-bud mesenchymal cell micromass cultures. Bone, 2008, 42, 1061-1071.	2.9	36
125	DSPP effects on in vivo bone mineralization. Bone, 2008, 43, 983-990.	2.9	75
126	Cell Culture Systems for Studies of Bone and Tooth Mineralization. Chemical Reviews, 2008, 108, 4716-4733.	47.7	92

#	Article	IF	Citations
127	Sphingomyelin Degradation is a Key Factor in Dentin and Bone Mineralization: Lessons from the <i>fro/fro</i> Mouse. Journal of Dental Research, 2008, 87, 9-13.	5.2	25
128	The Regulatory Role of Matrix Proteins in Mineralization of Bone. , 2008, , 191-240.		8
129	Fourier Transform-Infrared Microspectroscopy and Microscopic Imaging. Methods in Molecular Biology, 2008, 455, 293-303.	0.9	43
130	A Novel Regulatory Role for Stromal-derived Factor-1 Signaling in Bone Morphogenic Protein-2 Osteogenic Differentiation of Mesenchymal C2C12 Cells. Journal of Biological Chemistry, 2007, 282, 18676-18685.	3.4	93
131	Filamin B mutations cause chondrocyte defects in skeletal development. Human Molecular Genetics, 2007, 16, 1661-1675.	2.9	83
132	In Vitro Bio-Mineralization Process. Key Engineering Materials, 2007, 361-363, 543-546.	0.4	0
133	Fourier transform infrared and Raman microspectroscopy and microscopic imaging of bone. Current Opinion in Orthopaedics, 2007, 18, 499-504.	0.3	12
134	Maturational changes in dentin mineral properties. Bone, 2007, 40, 1399-1407.	2.9	46
135	Mineralization of Bones and Teeth. Elements, 2007, 3, 385-391.	0.5	223
136	Mechanical Strain Enhances Extracellular Matrix-Induced Gene Focusing and Promotes Osteogenic Differentiation of Human Mesenchymal Stem Cells Through an Extracellular-Related Kinase-Dependent Pathway. Stem Cells and Development, 2007, 16, 467-480.	2.1	103
137	Chondrocyte apoptosis is not essential for cartilage calcification: Evidence from an in vitro avian model. Journal of Cellular Biochemistry, 2007, 100, 43-57.	2.6	18
138	Activation of FAK is necessary for the osteogenic differentiation of human mesenchymal stem cells on laminin-5. Journal of Cellular Biochemistry, 2007, 100, 499-514.	2.6	98
139	Release of gentamicin from a tricalcium phosphate bone implant. Journal of Orthopaedic Research, 2007, 25, 23-29.	2.3	59
140	Changes in matrix phosphorylation during bovine dentin development. European Journal of Oral Sciences, 2007, 115 , $296-302$.	1.5	9
141	Focal adhesion kinase signaling pathways regulate the osteogenic differentiation of human mesenchymal stem cells. Experimental Cell Research, 2007, 313, 22-37.	2.6	260
142	FT-IR imaging of native and tissue-engineered bone and cartilage. Biomaterials, 2007, 28, 2465-2478.	11.4	467
143	Focal adhesion kinase signaling controls cyclic tensile strain enhanced collagen I-induced osteogenic differentiation of human mesenchymal stem cells. MCB Molecular and Cellular Biomechanics, 2007, 4, 177-88.	0.7	9
144	Does Sex Matter in Musculoskeletal Health? A Workshop Report. Orthopedic Clinics of North America, 2006, 37, 523-529.	1.2	9

#	Article	IF	Citations
145	Infrared imaging microscopy of bone: Illustrations from a mouse model of Fabry disease. Biochimica Et Biophysica Acta - Biomembranes, 2006, 1758, 942-947.	2.6	21
146	Molecular imaging promotes progress in orthopedic research. Bone, 2006, 39, 965-977.	2.9	47
147	Mineralization, Structure and Function of Bone. , 2006, , 201-212.		11
148	Mineral Changes in Osteoporosis. Clinical Orthopaedics and Related Research, 2006, 443, 28-38.	1.5	127
149	Assessment of bone mineral and matrix using backscatter electron imaging and FTIR imaging. Current Osteoporosis Reports, 2006, 4, 71-75.	3.6	53
150	Clinical manifestations and pathogenesis of hydroxyapatite crystal deposition in juvenile dermatomyositis. Current Rheumatology Reports, 2006, 8, 236-243.	4.7	31
151	Composition of calcifications in children with juvenile dermatomyositis: Association with chronic cutaneous inflammation. Arthritis and Rheumatism, 2006, 54, 3345-3350.	6.7	71
152	Effects of surface roughness and maximum load on the mechanical properties of cancellous bone measured by nanoindentation. Journal of Biomedical Materials Research - Part A, 2006, 77A, 426-435.	4.0	167
153	Fgfr4 Is Required for Effective Muscle Regeneration in Vivo. Journal of Biological Chemistry, 2006, 281, 429-438.	3.4	90
154	Mineralization, Structure and Function of Bone., 2006,, 201-212.		13
155	DMP1 Depletion Decreases Bone Mineralization In Vivo: An FTIR Imaging Analysis. Journal of Bone and Mineral Research, 2005, 20, 2169-2177.	2.8	190
156	High-Resolution Imaging of Bone Precursor Cells Within the Intact Bone Marrow Cavity of Living Mice. Molecular Therapy, 2005, 12, 33-41.	8.2	10
157	Dkk2 has a role in terminal osteoblast differentiation and mineralized matrix formation. Nature Genetics, 2005, 37, 945-952.	21.4	324
158	Infrared spectroscopic characterization of mineralized tissues. Vibrational Spectroscopy, 2005, 38, 107-114.	2.2	136
159	Overexpression of IGF-Binding Protein 5 Alters Mineral and Matrix Properties in Mouse Femora: An Infrared Imaging Study. Calcified Tissue International, 2005, 76, 187-193.	3.1	14
160	Importance of Phosphorylation for Osteopontin Regulation of Biomineralization. Calcified Tissue International, 2005, 77, 45-54.	3.1	257
161	Comparison of mineral quality and quantity in iliac crest biopsies from high- and low-turnover osteoporosis: an FT-IR microspectroscopic investigation. Osteoporosis International, 2005, 16, 2031-2038.	3.1	165
162	Does Sex Matter in Musculoskeletal Health? <sbt aid="1021074">The Influence of Sex and Gender on Musculoskeletal Health<cross-ref refid="fn1" type="fn">*</cross-ref></sbt> . Journal of Bone and Joint Surgery - Series A, 2005, 87, 1631.	3.0	61

#	Article	IF	Citations
163	Laminin-5 Induces Osteogenic Gene Expression in Human Mesenchymal Stem Cells through an ERK-dependent Pathway. Molecular Biology of the Cell, 2005, 16, 881-890.	2.1	168
164	Variation in Mineral Properties in Normal and Mutant Bones and Teeth. Cells Tissues Organs, 2005, 181, 144-153.	2.3	50
165	Dmp1-deficient Mice Display Severe Defects in Cartilage Formation Responsible for a Chondrodysplasia-like Phenotype. Journal of Biological Chemistry, 2005, 280, 6197-6203.	3.4	191
166	Infrared imaging of calcified tissue in bone biopsies from adults with osteomalacia. Bone, 2005, 36, 6-12.	2.9	123
167	Differential effects of alendronate treatment on bone from growing osteogenesis imperfecta and wild-type mouse. Bone, 2005, 36, 150-158.	2.9	73
168	Infrared analysis of bone in health and disease. Journal of Biomedical Optics, 2005, 10, 031102.	2.6	149
169	Mineralization. , 2005, , 477-495.		2
170	Adhesion to Vitronectin and Collagen I Promotes Osteogenic Differentiation of Human Mesenchymal Stem Cells. Journal of Biomedicine and Biotechnology, 2004, 2004, 24-34.	3.0	358
171	In Vitro Effects of Dentin Matrix Protein-1 on Hydroxyapatite Formation Provide Insights into in Vivo Functions. Journal of Biological Chemistry, 2004, 279, 18115-18120.	3.4	170
172	Effects of Surface Roughness and Maximum Load on the Mechanical Properties of Cancellous Bone Measured by Nanoindentation. Materials Research Society Symposia Proceedings, 2004, 823, W8.5.1.	0.1	3
173	Bone Fragility and Collagen Cross-Links. Journal of Bone and Mineral Research, 2004, 19, 2000-2004.	2.8	225
174	Diffusion Systems for Evaluation of Biomineralization. Calcified Tissue International, 2004, 75, 494-501.	3.1	80
175	Thermal and chemical modification of titanium–aluminum–vanadium implant materials: effects on surface properties, glycoprotein adsorption, and MG63 cell attachment. Biomaterials, 2004, 25, 3135-3146.	11.4	192
176	Fourier Transform Infrared Microscopic Imaging: Effects of Estrogen and Estrogen Deficiency on Fracture Healing in Rat Femurs. Applied Spectroscopy, 2004, 58, 1-9.	2.2	30
177	Is bone mineral crystal size a significant contributor to "bone quality�. BoneKEy Osteovision, 2004, 1, 4-7.	0.6	9
178	The Organic and Inorganic Matrices. , 2004, , 91-123.		5
179	Bone Mineral and Collagen Quality in Humeri of Ovariectomized Cynomolgus Monkeys Given rhPTH(1-34) for 18 Months. Journal of Bone and Mineral Research, 2003, 18, 769-775.	2.8	76
180	Infrared Analysis of the Mineral and Matrix in Bones of Osteonectin-Null Mice and Their Wildtype Controls. Journal of Bone and Mineral Research, 2003, 18, 1005-1011.	2.8	114

#	Article	IF	Citations
181	Effect of Hormone Replacement Therapy on Bone Quality in Early Postmenopausal Women. Journal of Bone and Mineral Research, 2003, 18, 955-959.	2.8	76
182	Bone Morphogenetic Protein-2 Restores Mineralization in Glucocorticoid-Inhibited MC3T3-E1 Osteoblast Cultures. Journal of Bone and Mineral Research, 2003, 18, 1186-1197.	2.8	100
183	Von Kossa Staining Alone Is Not Sufficient to Confirm that Mineralization In Vitro Represents Bone Formation. Calcified Tissue International, 2003, 72, 537-547.	3.1	298
184	Osteopontin Facilitates Bone Resorption, Decreasing Bone Mineral Crystallinity and Content During Calcium Deficiency. Calcified Tissue International, 2003, 73, 86-92.	3.1	70
185	Targeted Overexpression of Vitamin D Receptor in Osteoblasts Increases Calcium Concentration Without Affecting Structural Properties of Bone Mineral Crystals. Calcified Tissue International, 2003, 73, 251-257.	3.1	47
186	Mineral Analysis Provides Insights into the Mechanism of Biomineralization. Calcified Tissue International, 2003, 72, 533-536.	3.1	24
187	No bias of ignored bilaterality when analysing the revision risk of knee prostheses: Analysis of a population based sample of 44,590 patients with 55,298 knee prostheses from the national Swedish Knee Arthroplasty Register. BMC Musculoskeletal Disorders, 2003, 4, 1.	1.9	144
188	Chemical and biomechanical characterization of hyperhomocysteinemic bone disease in an animal model. BMC Musculoskeletal Disorders, 2003, 4, 2.	1.9	31
189	Guidelines for describing mouse skeletal phenotype. Journal of Orthopaedic Research, 2003, 21, 1-5.	2.3	11
190	Spectroscopically Determined Collagen Pyr/deH-DHLNL Cross-Link Ratio and Crystallinity Indices Differ Markedly in Recombinant Congenic Mice with Divergent Calculated Bone Tissue Strength. Connective Tissue Research, 2003, 44, 134-142.	2.3	57
191	Biomineralization: An Overview. Connective Tissue Research, 2003, 44, 5-9.	2.3	124
192	Brief Bone Morphogenetic Protein 2 Treatment of Glucocorticoid-inhibited MC3T3-E1 Osteoblasts Rescues Commitment-associated Cell Cycle and Mineralization without Alteration of Runx2. Journal of Biological Chemistry, 2003, 278, 44995-45003.	3.4	57
193	Biomineralization: An Overview. Connective Tissue Research, 2003, 44, 5-9.	2.3	43
194	Spectroscopically Determined Collagen Pyr/deH-DHLNL Cross-Link Ratio and Crystallinity Indices Differ Markedly in Recombinant Congenic Mice with Divergent Calculated Bone Tissue Strength. Connective Tissue Research, 2003, 44, 134-142.	2.3	7
195	Mineral Changes in Osteopetrosis. Critical Reviews in Eukaryotic Gene Expression, 2003, 13, 8.	0.9	21
196	Biomineralization: an overview. Connective Tissue Research, 2003, 44 Suppl 1, 5-9.	2.3	33
197	Alendronate Treatment for Infants with Osteogenesis Imperfecta: Demonstration of Efficacy in a Mouse Model. Pediatric Research, 2002, 52, 660-670.	2.3	66
198	Chemical Structure-Based Three-Dimensional Reconstruction of Human Cortical Bone from Two-Dimensional Infrared Images. Applied Spectroscopy, 2002, 56, 419-422.	2.2	20

#	Article	IF	Citations
199	Effects of transforming growth factor- \hat{l}^2 deficiency on bone development: A Fourier Transform-Infrared imaging analysis. Bone, 2002, 31, 675-684.	2.9	51
200	BMP-6 accelerates both chondrogenesis and mineral maturation in differentiating chick limb-bud mesenchymal cell cultures. Journal of Cellular Biochemistry, 2002, 84, 509-519.	2.6	56
201	Pathogenesis of cartilage calcification: Mechanisms of crystal deposition in cartilage. Current Rheumatology Reports, 2002, 4, 245-251.	4.7	21
202	Optimal Methods for Processing Mineralized Tissues for Fourier Transform Infrared Microspectroscopy. Calcified Tissue International, 2002, 70, 422-429.	3.1	107
203	Osteoblast-Mediated Mineral Deposition in Culture is Dependent on Surface Microtopography. Calcified Tissue International, 2002, 71, 519-529.	3.1	245
204	In Vivo RANK Signaling Blockade Using the Receptor Activator of NF-κB:Fc Effectively Prevents and Ameliorates Wear Debris-Induced Osteolysis via Osteoclast Depletion Without Inhibiting Osteogenesis. Journal of Bone and Mineral Research, 2002, 17, 192-199.	2.8	139
205	BMP-6 accelerates both chondrogenesis and mineral maturation in differentiating chick limb-bud mesenchymal cell cultures. Journal of Cellular Biochemistry, 2002, 84, 509-19.	2.6	18
206	Extracellular Matrix Mineralization and Osteoblast Gene Expression by Human Adipose Tissue–Derived Stromal Cells. Tissue Engineering, 2001, 7, 729-741.	4.6	474
207	In situ analysis of mineral content and crystallinity in bone using infrared micro-spectroscopy of the \hat{l} /24 PO43 \hat{a} ° vibration. Biochimica Et Biophysica Acta - General Subjects, 2001, 1527, 11-19.	2.4	201
208	Homocysteine decreases chondrocyte-mediated matrix mineralization in differentiating chick limb-bud mesenchymal cell micro-mass cultures. Bone, 2001, 28, 387-398.	2.9	55
209	Vitamin C-sulfate inhibits mineralization in chondrocyte cultures: a caveat. Matrix Biology, 2001, 20, 99-106.	3.6	6
210	The Biochemistry of Bone., 2001,, 107-188.		20
211	Musculoskeletal Disorders and Orthopedic Conditions. JAMA - Journal of the American Medical Association, 2001, 285, 619.	7.4	11
212	A Controlled Study of the Effects of Alendronate in a Growing Mouse Model of Osteogenesis Imperfecta. Calcified Tissue International, 2001, 69, 94-101.	3.1	82
213	Type I collagen influences cartilage calcification: An immunoblocking study in differentiating chick limb-bud mesenchymal cell cultures. Journal of Cellular Biochemistry, 2000, 79, 89-102.	2.6	14
214	Cell science and protein crystal growth research for the International Space Station. Journal of Cellular Biochemistry, 2000, 79, 662-671.	2.6	2
215	Dentin Sialoprotein (DSP) Has Limited Effects on In Vitro Apatite Formation and Growth. Calcified Tissue International, 2000, 67, 472-478.	3.1	86
216	IR Microscopic Imaging of Pathological States and Fracture Healing of Bone. Applied Spectroscopy, 2000, 54, 1183-1191.	2.2	70

#	Article	IF	Citations
217	The importance of mineral in bone and mineral research. Bone, 2000, 27, 341-342.	2.9	29
218	A physical, chemical, and mechanical study of lumbar vertebrae from normal, ovariectomized, and nandrolone decanoate-treated cynomolgus monkeys (macaca fascicularis). Bone, 2000, 27, 541-550.	2.9	124
219	Infrared Spectroscopy, Microscopy, and Microscopic Imaging of Mineralizing Tissues: Spectra-Structure Correlations from Human Iliac Crest Biopsies. Journal of Biomedical Optics, 1999, 4, 14.	2.6	91
220	Intermittent and Continuous Administration of the Bisphosphonate Ibandronate in Ovariohysterectomized Beagle Dogs: Effects on Bone Morphometry and Mineral Properties. Journal of Bone and Mineral Research, 1999, 14, 1768-1778.	2.8	87
221	The Material Basis for Reduced Mechanical Properties in oim Mice Bones. Journal of Bone and Mineral Research, 1999, 14, 264-272.	2.8	144
222	Complementary information on bone ultrastructure from scanning small angle X-ray scattering and Fourier-transform infrared microspectroscopy. Bone, 1999, 25, 287-293.	2.9	146
223	Phosphoproteins and Biomineralization. Phosphorus, Sulfur and Silicon and the Related Elements, 1999, 144, 189-192.	1.6	8
224	Infrared Microspectroscopic Imaging of Biomineralized Tissues using a Mercury-Cadmium-Telluride Focal-Plane Array Detector. Phosphorus, Sulfur and Silicon and the Related Elements, 1999, 144, 417-420.	1.6	9
225	Targeted disruption of the biglycan gene leads to an osteoporosis-like phenotype in mice. Nature Genetics, 1998, 20, 78-82.	21.4	543
226	Biomineralization: Conflicts, challenges, and opportunities. Journal of Cellular Biochemistry, 1998, 72, 83-91.	2.6	215
227	Identification of theoim mutation by dye terminator chemistry combined with automated direct DNA sequencing. Journal of Orthopaedic Research, 1998, 16, 38-42.	2.3	10
228	Will Biomimetics Provide New Answers for Old Problems of Calcified Tissues?. Calcified Tissue International, 1998, 63, 179-182.	3.1	49
229	Physico-chemical properties of human plasma fibronectin binding to well characterized titanium dioxide. Colloids and Surfaces B: Biointerfaces, 1998, 11, 131-139.	5.0	45
230	Fourier transform infrared microspectroscopic analysis of bones of osteocalcin-deficient mice provides insight into the function of osteocalcin. Bone, 1998, 23, 187-196.	2.9	411
231	Biomineralization: Conflicts, challenges, and opportunities. , 1998, 72, 83.		1
232	Biomineralization: Conflicts, challenges, and opportunities. Journal of Cellular Biochemistry, 1998, 72, 83-91.	2.6	2
233	Amorphous Calcium Phosphate: The Contention of Bone. Journal of Dental Research, 1997, 76, 1433-1436.	5.2	120
234	Calcitonin Alters Bone Quality in Beagle Dogs. Journal of Bone and Mineral Research, 1997, 12, 1936-1943.	2.8	60

#	Article	IF	CITATIONS
235	Sixth International Conference on the Chemistry and Biology of Mineralized Tissues. Journal of Bone and Mineral Metabolism, 1997, 15, 107-107.	2.7	O
236	Matrix Vesicles Promote Mineralization in a Gelatin Gel. Calcified Tissue International, 1997, 60, 309-315.	3.1	57
237	Effects of Bone CS-Proteoglycans, DS-Decorin, and DS-Biglycan on Hydroxyapatite Formation in a Gelatin Gel. Calcified Tissue International, 1997, 61, 298-305.	3.1	152
238	FTIR Microspectroscopic Analysis of Normal Human Cortical and Trabecular Bone. Calcified Tissue International, 1997, 61, 480-486.	3.1	237
239	FTIR Microspectroscopic Analysis of Human Iliac Crest Biopsies from Untreated Osteoporotic Bone. Calcified Tissue International, 1997, 61, 487-492.	3.1	201
240	Effects of proteoglycan modification on mineral formation in a differentiating chick limb-bud mesenchymal cell culture system. Journal of Cellular Biochemistry, 1997, 64, 632-643.	2.6	39
241	Characterization of cartilage metabolic response to static and dynamic stress using a mechanical explant test system. Journal of Biomechanics, 1997, 30, 1-9.	2.1	139
242	Pyridoxine deficiency affects biomechanical properties of chick tibial bone. Bone, 1996, 18, 567-574.	2.9	97
243	Lipids and Biomineralizations. Progress in Histochemistry and Cytochemistry, 1996, 31, III-187.	5.1	55
244	Matrix Proteins and Mineralization: An Overview. Connective Tissue Research, 1996, 35, 357-363.	2.3	194
245	THE EFFECT OF MISOPROSTOL AND PROSTANOIDS ON cAMP PRODUCTION AND CALCIFICATION IN A DIFFERENTIATING CHICK LIMB-BUD CULTURE SYSTEM. American Journal of Therapeutics, 1996, 3, 179-188.	0.9	1
246	Orthopaedic research in the 21st century: The new renaissance scientist. Journal of Orthopaedic Science, 1996, 1, 349-350.	1.1	0
247	Polarized FT-IR Microscopy of Calcified Turkey Leg Tendon. Connective Tissue Research, 1996, 34, 203-211.	2.3	55
248	The mechanism of \hat{l}^2 -glycerophosphate action in mineralizing chick limb-bud mesenchymal cell cultures. Journal of Bone and Mineral Research, 1996, 11, 1694-1702.	2.8	52
249	Persistence of Complexed Acidic Phospholipids in Rapidly Mineralizing Tissues is Due to Affinity for Mineral and Resistance to Hydrolytic Attack: In Vitro Data. Calcified Tissue International, 1996, 58, 45-51.	3.1	0
250	Diminished material properties and altered bone structure in rat femora during pregnancy. Journal of Orthopaedic Research, 1995, 13, 41-49.	2.3	9
251	Subcutaneous microvascular (capillary) calcification. Another basis for livedo-like skin changes?. Clinical and Experimental Dermatology, 1995, 20, 213-217.	1.3	6
252	Osteopontin and Related Phosphorylated Sialoproteins: Effects on Mineralization ^a . Annals of the New York Academy of Sciences, 1995, 760, 249-256.	3.8	147

#	Article	IF	CITATIONS
253	Fourier Transform Infrared Spectroscopy of Synthetic and Biological Apatites. , 1995, , 283-294.		14
254	Adenosine 5?-triphosphate promotes mineralization in differentiating chick limb-bud mesenchymal cell cultures. Microscopy Research and Technique, 1994, 28, 492-504.	2.2	31
255	Strontium alters the complexed acidic phospholipid content of mineralizing tissues. Bone, 1994, 15, 425-430.	2.9	40
256	Vitamin B6 deficiency experimentally-induced bone and joint disorder: microscopic, radiographic and biochemical evidence. British Journal of Nutrition, 1994, 71, 919-932.	2.3	24
257	Retinoic Acid Induces Rapid Mineralization and Expression of Mineralization-Related Genes in Chondrocytes. Experimental Cell Research, 1993, 207, 413-420.	2.6	134
258	The Effect of Gallium Nitrate on Healing of Vitamin D– and Phosphate–Deficient Rickets in the Immature Rat. Calcified Tissue International, 1993, 53, 400-410.	3.1	10
259	Mineral-Matrix Interactions in Bone and Cartilage. Clinical Orthopaedics and Related Research, 1992, &NA, 244???274.	1.5	117
260	Matrix mineralization in hypertrophic chondrocyte cultures. Bone and Mineral, 1992, 18, 91-106.	1.9	37
261	Studies of mineralization in tissue culture: optimal conditions for cartilage calcification. Bone and Mineral, 1992, 16, 11-36.	1.9	75
262	An FT-IR microscopic investigation of the effects of tissue preservation on bone. Calcified Tissue International, 1992, 51, 72-77.	3.1	79
263	FT-IR microscopic mappings of early mineralization in chick limb bud mesenchymal cell cultures. Calcified Tissue International, 1992, 51, 443-448.	3.1	67
264	Articular Cartilage Vesicles Generate Calcium Pyrophosphate Dihydrate-Like Crystals in Vitro. Arthritis and Rheumatism, 1992, 35, 231-240.	6.7	94
265	Effect of short-term hypomagnesemia on the chemical and mechanical properties of rat bone. Journal of Orthopaedic Research, 1992, 10, 774-783.	2.3	97
266	Hyaluronan interactions with Hydroxyapatite do not Alter In Vitro Hydroxyapatite Crystal Proliferation and Growth. Matrix Biology, 1991, 11, 442-446.	1.7	28
267	Phospholipid changes in the bones of the hypophosphatemic mouse. Bone, 1991, 12, 345-351.	2.9	15
268	Bone particles from gallium-treated rats are resistant to resorption in vivo. Bone and Mineral, 1991, 12, 167-179.	1.9	32
269	The Role of Extracellular Matrix Components in Dentin Mineralization. Critical Reviews in Oral Biology and Medicine, 1991, 2, 369-387.	4.4	43
270	Effects of propranolol on bone metabolism in the rat. Journal of Orthopaedic Research, 1991, 9, 869-875.	2.3	94

#	Article	IF	Citations
271	Hydroxyapatite formation in the presence of proteoglycans of reduced sulfate content: Studies in the brachymorphic mouse. Calcified Tissue International, 1991, 49, 389-393.	3.1	35
272	The effect of phosphatidylserine onin vitro hydroxyapatite growth and proliferation. Calcified Tissue International, 1991, 49, 193-196.	3.1	40
273	Lipids in bone: Optimal conditions for tissue storage prior to lipid analyses. Calcified Tissue International, 1990, 46, 57-59.	3.1	12
274	Letter to the editor. Bone and Mineral, 1990, 10, 153.	1.9	0
275	Concentration-dependent effects of dentin phosphophoryn in the regulation of in vitro hydroxyapatite formation and growth. Bone and Mineral, 1990, 11, 55-65.	1.9	175
276	Bone Mineral and Matrix. Orthopedic Clinics of North America, 1990, 21, 19-29.	1.2	32
277	The Effects of Noncollagenous Matrix Proteins on Hydroxyapatite Formation and Proliferation in a Collagen Gel System. Connective Tissue Research, 1989, 21, 171-178.	2.3	42
278	Guest Editorial: What's in a Name? The Function of the Mineralized Tissue Matrix Proteins. Journal of Dental Research, 1989, 68, 159-159.	5.2	4
279	FT-IR microscopy of endochondral ossification at $20\hat{l}\frac{1}{4}$ spatial resolution. Calcified Tissue International, 1989, 44, 20-24.	3.1	80
280	The effect of gallium on seeded hydroxyapatite growth. Calcified Tissue International, 1989, 44, 138-142.	3.1	28
281	Hydroxyapatite formation in a dynamic collagen gel system: effects of type I collagen, lipids, and proteoglycans. The Journal of Physical Chemistry, 1989, 93, 1628-1633.	2.9	96
282	Noncollagenous matrix proteins and their role in mineralization. Bone and Mineral, 1989, 6, 111-123.	1.9	219
283	Phospholipids and calcification. , 1989, , 215-243.		11
284	The mineral and mechanical properties of bone in chronic experimental diabetes. Journal of Orthopaedic Research, 1988, 6, 317-323.	2.3	123
285	Effect of gallium on bone mineral properties. Calcified Tissue International, 1988, 43, 300-306.	3.1	56
286	Biochemical characterization of fracture callus proteoglycans. Journal of Orthopaedic Research, 1987, 5, 7-13.	2.3	9
287	Gallium increases bone calcium and crystallite perfection of hydroxyapatite. Calcified Tissue International, 1986, 39, 376-381.	3.1	90
288	The effects of proteoglycans from different cartilage types onin vitro hydroxyapatite proliferation. Calcified Tissue International, 1986, 39, 324-327.	3.1	31

#	Article	IF	Citations
289	<i>In vivo</i> hydroxyapatite formation induced by lipids. Journal of Bone and Mineral Research, 1986, 1, 409-415.	2.8	68
290	Mechanisms of proteoglycan inhibition of hydroxyapatite growth. Calcified Tissue International, 1985, 37, 395-400.	3.1	139
291	Calcium-acidic phospholipid-phosphate complexes in human atherosclerotic aortas. Calcified Tissue International, 1985, 37, 121-125.	3.1	39
292	The effect of osteocalcin onln vitro lipid-induced hydroxyapatite formation and seeded hydroxyapatite growth. Calcified Tissue International, 1985, 37, 57-62.	3.1	67
293	Topographical variations in the morphology and biochemistry of adult canine tibial plateau articular cartilage. Journal of Orthopaedic Research, 1985, 3, 1-16.	2.3	109
294	Phospholipids and calcification: An overview. Bone, 1985, 6, 474.	2.9	2
295	The Effects of Trifluoperazine on Calcifying Tissues in the Immature Rat. Experimental Biology and Medicine, 1984, 176, 154-163.	2.4	3
296	Co-isolation of proteolipids and calcium-phospholipid-phosphate complexes. Calcified Tissue International, 1984, 36, 214-218.	3.1	45
297	The inhibitory effect of cartilage proteoglycans on hydroxyapatite growth. Calcified Tissue International, 1984, 36, 285-290.	3.1	163
298	Phosphate modulation of calcium transport by a calcium-phospholipid-phosphate complex of calcifying tissues. Calcified Tissue International, 1984, 36, 317-319.	3.1	13
299	Changes in lipids during matrix: Induced endochondral bone formation. Calcified Tissue International, 1983, 35, 549-554.	3.1	37
300	Relationship between proteolipids and calcium-phospholipid-phosphate complexes inBacterionema matruchotii calcification. Calcified Tissue International, 1980, 30, 167-174.	3.1	62
301	The crystal chemistry of submandibular and parotid salivary gland stones. Journal of Oral Pathology and Medicine, 1979, 8, 284-291.	2.7	49
302	Calcium-Phospholipid-Phosphate Complexes in Mineralizing Tissue. Experimental Biology and Medicine, 1978, 157, 590-593.	2.4	25
303	The role of synthetic and bone extracted Ca-phospholipid-PO4 complexes in hydroxyapatite formation. Calcified Tissue Research, 1977, 23, 251-258.	1.3	134
304	Conversion of amorphous calcium phosphate to microcrystalline hydroxyapatite. A pH-dependent, solution-mediated, solid-solid conversion. The Journal of Physical Chemistry, 1973, 77, 2313-2317.	2.9	350
305	Osteoporosis and Osteopetrosis., 0,, 59-79.		7