List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5353999/publications.pdf Version: 2024-02-01

305 papers	22,181 citations	4960 84 h-index	11607 135 g-index
314	314	314	17940
all docs	docs citations	times ranked	citing authors

ADELE L ROSKEV

#	Article	IF	CITATIONS
1	Targeted disruption of the biglycan gene leads to an osteoporosis-like phenotype in mice. Nature Genetics, 1998, 20, 78-82.	21.4	543
2	Dentin structure composition and mineralization. Frontiers in Bioscience - Elite, 2011, E3, 711-735.	1.8	504
3	Extracellular Matrix Mineralization and Osteoblast Gene Expression by Human Adipose Tissue–Derived Stromal Cells. Tissue Engineering, 2001, 7, 729-741.	4.6	474
4	FT-IR imaging of native and tissue-engineered bone and cartilage. Biomaterials, 2007, 28, 2465-2478.	11.4	467
5	Fourier transform infrared microspectroscopic analysis of bones of osteocalcin-deficient mice provides insight into the function of osteocalcin. Bone, 1998, 23, 187-196.	2.9	411
6	Aging and Bone. Journal of Dental Research, 2010, 89, 1333-1348.	5.2	408
7	Adhesion to Vitronectin and Collagen I Promotes Osteogenic Differentiation of Human Mesenchymal Stem Cells. Journal of Biomedicine and Biotechnology, 2004, 2004, 24-34.	3.0	358
8	Conversion of amorphous calcium phosphate to microcrystalline hydroxyapatite. A pH-dependent, solid-solid conversion. The Journal of Physical Chemistry, 1973, 77, 2313-2317.	2.9	350
9	Dkk2 has a role in terminal osteoblast differentiation and mineralized matrix formation. Nature Genetics, 2005, 37, 945-952.	21.4	324
10	Von Kossa Staining Alone Is Not Sufficient to Confirm that Mineralization In Vitro Represents Bone Formation. Calcified Tissue International, 2003, 72, 537-547.	3.1	298
11	Bone composition: relationship to bone fragility and antiosteoporotic drug effects. BoneKEy Reports, 2013, 2, 447.	2.7	284
12	Bone loss caused by iron overload in a murine model: importance of oxidative stress. Blood, 2010, 116, 2582-2589.	1.4	269
13	Focal adhesion kinase signaling pathways regulate the osteogenic differentiation of human mesenchymal stem cells. Experimental Cell Research, 2007, 313, 22-37.	2.6	260
14	Importance of Phosphorylation for Osteopontin Regulation of Biomineralization. Calcified Tissue International, 2005, 77, 45-54.	3.1	257
15	Endogenous glucocorticoids decrease skeletal angiogenesis, vascularity, hydration, and strength in aged mice. Aging Cell, 2010, 9, 147-161.	6.7	246
16	Osteoblast-Mediated Mineral Deposition in Culture is Dependent on Surface Microtopography. Calcified Tissue International, 2002, 71, 519-529.	3.1	245
17	FTIR Microspectroscopic Analysis of Normal Human Cortical and Trabecular Bone. Calcified Tissue International, 1997, 61, 480-486.	3.1	237
18	Dilatational band formation in bone. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 19178-19183.	7.1	234

#	Article	IF	CITATIONS
19	Bone Fragility and Collagen Cross-Links. Journal of Bone and Mineral Research, 2004, 19, 2000-2004.	2.8	225
20	Mineralization of Bones and Teeth. Elements, 2007, 3, 385-391.	0.5	223
21	Noncollagenous matrix proteins and their role in mineralization. Bone and Mineral, 1989, 6, 111-123.	1.9	219
22	Biomineralization: Conflicts, challenges, and opportunities. Journal of Cellular Biochemistry, 1998, 72, 83-91.	2.6	215
23	FTIR Microspectroscopic Analysis of Human Iliac Crest Biopsies from Untreated Osteoporotic Bone. Calcified Tissue International, 1997, 61, 487-492.	3.1	201
24	In situ analysis of mineral content and crystallinity in bone using infrared micro-spectroscopy of the ν4 PO43â^' vibration. Biochimica Et Biophysica Acta - General Subjects, 2001, 1527, 11-19.	2.4	201
25	Matrix Proteins and Mineralization: An Overview. Connective Tissue Research, 1996, 35, 357-363.	2.3	194
26	Thermal and chemical modification of titanium–aluminum–vanadium implant materials: effects on surface properties, glycoprotein adsorption, and MG63 cell attachment. Biomaterials, 2004, 25, 3135-3146.	11.4	192
27	Dmp1-deficient Mice Display Severe Defects in Cartilage Formation Responsible for a Chondrodysplasia-like Phenotype. Journal of Biological Chemistry, 2005, 280, 6197-6203.	3.4	191
28	DMP1 Depletion Decreases Bone Mineralization In Vivo: An FTIR Imaging Analysis. Journal of Bone and Mineral Research, 2005, 20, 2169-2177.	2.8	190
29	Reduced cortical bone compositional heterogeneity with bisphosphonate treatment in postmenopausal women with intertrochanteric and subtrochanteric fractures. Journal of Bone and Mineral Research, 2012, 27, 672-678.	2.8	188
30	Concentration-dependent effects of dentin phosphophoryn in the regulation of in vitro hydroxyapatite formation and growth. Bone and Mineral, 1990, 11, 55-65.	1.9	175
31	Infrared Assessment of Bone Quality: A Review. Clinical Orthopaedics and Related Research, 2011, 469, 2170-2178.	1.5	172
32	Use of FTIR Spectroscopic Imaging to Identify Parameters Associated With Fragility Fracture. Journal of Bone and Mineral Research, 2009, 24, 1565-1571.	2.8	171
33	In Vitro Effects of Dentin Matrix Protein-1 on Hydroxyapatite Formation Provide Insights into in Vivo Functions. Journal of Biological Chemistry, 2004, 279, 18115-18120.	3.4	170
34	Laminin-5 Induces Osteogenic Gene Expression in Human Mesenchymal Stem Cells through an ERK-dependent Pathway. Molecular Biology of the Cell, 2005, 16, 881-890.	2.1	168
35	Effects of surface roughness and maximum load on the mechanical properties of cancellous bone measured by nanoindentation. Journal of Biomedical Materials Research - Part A, 2006, 77A, 426-435.	4.0	167
36	Comparison of mineral quality and quantity in iliac crest biopsies from high- and low-turnover osteoporosis: an FT-IR microspectroscopic investigation. Osteoporosis International, 2005, 16, 2031-2038.	3.1	165

#	Article	IF	CITATIONS
37	The inhibitory effect of cartilage proteoglycans on hydroxyapatite growth. Calcified Tissue International, 1984, 36, 285-290.	3.1	163
38	Effects of Bone CS-Proteoglycans, DS-Decorin, and DS-Biglycan on Hydroxyapatite Formation in a Gelatin Gel. Calcified Tissue International, 1997, 61, 298-305.	3.1	152
39	Infrared analysis of bone in health and disease. Journal of Biomedical Optics, 2005, 10, 031102.	2.6	149
40	Osteopontin and Related Phosphorylated Sialoproteins: Effects on Mineralization ^a . Annals of the New York Academy of Sciences, 1995, 760, 249-256.	3.8	147
41	Complementary information on bone ultrastructure from scanning small angle X-ray scattering and Fourier-transform infrared microspectroscopy. Bone, 1999, 25, 287-293.	2.9	146
42	The Material Basis for Reduced Mechanical Properties in oim Mice Bones. Journal of Bone and Mineral Research, 1999, 14, 264-272.	2.8	144
43	No bias of ignored bilaterality when analysing the revision risk of knee prostheses: Analysis of a population based sample of 44,590 patients with 55,298 knee prostheses from the national Swedish Knee Arthroplasty Register. BMC Musculoskeletal Disorders, 2003, 4, 1.	1.9	144
44	Mechanisms of proteoglycan inhibition of hydroxyapatite growth. Calcified Tissue International, 1985, 37, 395-400.	3.1	139
45	Characterization of cartilage metabolic response to static and dynamic stress using a mechanical explant test system. Journal of Biomechanics, 1997, 30, 1-9.	2.1	139
46	In Vivo RANK Signaling Blockade Using the Receptor Activator of NF-ήB:Fc Effectively Prevents and Ameliorates Wear Debris-Induced Osteolysis via Osteoclast Depletion Without Inhibiting Osteogenesis. Journal of Bone and Mineral Research, 2002, 17, 192-199.	2.8	139
47	Infrared spectroscopic characterization of mineralized tissues. Vibrational Spectroscopy, 2005, 38, 107-114.	2.2	136
48	Effects of tissue age on bone tissue material composition and nanomechanical properties in the rat cortex. Journal of Biomedical Materials Research - Part A, 2010, 92A, 1048-1056.	4.0	135
49	The role of synthetic and bone extracted Ca-phospholipid-PO4 complexes in hydroxyapatite formation. Calcified Tissue Research, 1977, 23, 251-258.	1.3	134
50	Retinoic Acid Induces Rapid Mineralization and Expression of Mineralization-Related Genes in Chondrocytes. Experimental Cell Research, 1993, 207, 413-420.	2.6	134
51	Mineral Changes in Osteoporosis. Clinical Orthopaedics and Related Research, 2006, 443, 28-38.	1.5	127
52	Stromal derived factor-1 regulates bone morphogenetic protein 2-induced osteogenic differentiation of primary mesenchymal stem cells. International Journal of Biochemistry and Cell Biology, 2010, 42, 1132-1141.	2.8	125
53	A physical, chemical, and mechanical study of lumbar vertebrae from normal, ovariectomized, and nandrolone decanoate-treated cynomolgus monkeys (macaca fascicularis). Bone, 2000, 27, 541-550.	2.9	124
54	Biomineralization: An Overview. Connective Tissue Research, 2003, 44, 5-9.	2.3	124

#	Article	IF	CITATIONS
55	The mineral and mechanical properties of bone in chronic experimental diabetes. Journal of Orthopaedic Research, 1988, 6, 317-323.	2.3	123
56	Infrared imaging of calcified tissue in bone biopsies from adults with osteomalacia. Bone, 2005, 36, 6-12.	2.9	123
57	Spectroscopic markers of bone quality in alendronate-treated postmenopausal women. Osteoporosis International, 2009, 20, 793-800.	3.1	123
58	Amorphous Calcium Phosphate: The Contention of Bone. Journal of Dental Research, 1997, 76, 1433-1436.	5.2	120
59	COL1 C-propeptide cleavage site mutations cause high bone mass osteogenesis imperfecta. Human Mutation, 2011, 32, 598-609.	2.5	119
60	Contribution of Mineral to Bone Structural Behavior and Tissue Mechanical Properties. Calcified Tissue International, 2010, 87, 450-460.	3.1	118
61	Mineral-Matrix Interactions in Bone and Cartilage. Clinical Orthopaedics and Related Research, 1992, &NA, 244???274.	1.5	117
62	Intrinsically disordered proteins and biomineralization. Matrix Biology, 2016, 52-54, 43-59.	3.6	115
63	Infrared Analysis of the Mineral and Matrix in Bones of Osteonectin-Null Mice and Their Wildtype Controls. Journal of Bone and Mineral Research, 2003, 18, 1005-1011.	2.8	114
64	Lathyrism-induced alterations in collagen cross-links influence the mechanical properties of bone material without affecting the mineral. Bone, 2011, 49, 1232-1241.	2.9	112
65	Decorin modulates collagen matrix assembly and mineralization. Matrix Biology, 2009, 28, 44-52.	3.6	110
66	Topographical variations in the morphology and biochemistry of adult canine tibial plateau articular cartilage. Journal of Orthopaedic Research, 1985, 3, 1-16.	2.3	109
67	Optimal Methods for Processing Mineralized Tissues for Fourier Transform Infrared Microspectroscopy. Calcified Tissue International, 2002, 70, 422-429.	3.1	107
68	Bisphosphonate treatment modifies canine bone mineral and matrix properties and their heterogeneity. Bone, 2010, 46, 666-672.	2.9	106
69	Spatial Variation in Osteonal Bone Properties Relative to Tissue and Animal Age. Journal of Bone and Mineral Research, 2009, 24, 1271-1281.	2.8	104
70	Mechanical Strain Enhances Extracellular Matrix-Induced Gene Focusing and Promotes Osteogenic Differentiation of Human Mesenchymal Stem Cells Through an Extracellular-Related Kinase-Dependent Pathway. Stem Cells and Development, 2007, 16, 467-480.	2.1	103
71	Bone Morphogenetic Protein-2 Restores Mineralization in Glucocorticoid-Inhibited MC3T3-E1 Osteoblast Cultures. Journal of Bone and Mineral Research, 2003, 18, 1186-1197.	2.8	100
72	Activation of FAK is necessary for the osteogenic differentiation of human mesenchymal stem cells on laminin-5. Journal of Cellular Biochemistry, 2007, 100, 499-514.	2.6	98

#	Article	IF	CITATIONS
73	Effect of short-term hypomagnesemia on the chemical and mechanical properties of rat bone. Journal of Orthopaedic Research, 1992, 10, 774-783.	2.3	97
74	Pyridoxine deficiency affects biomechanical properties of chick tibial bone. Bone, 1996, 18, 567-574.	2.9	97
75	Hydroxyapatite formation in a dynamic collagen gel system: effects of type I collagen, lipids, and proteoglycans. The Journal of Physical Chemistry, 1989, 93, 1628-1633.	2.9	96
76	Bone quality changes associated with aging and disease: a review. Annals of the New York Academy of Sciences, 2017, 1410, 93-106.	3.8	96
77	Effects of propranolol on bone metabolism in the rat. Journal of Orthopaedic Research, 1991, 9, 869-875.	2.3	94
78	Articular Cartilage Vesicles Generate Calcium Pyrophosphate Dihydrate-Like Crystals in Vitro. Arthritis and Rheumatism, 1992, 35, 231-240.	6.7	94
79	A Novel Regulatory Role for Stromal-derived Factor-1 Signaling in Bone Morphogenic Protein-2 Osteogenic Differentiation of Mesenchymal C2C12 Cells. Journal of Biological Chemistry, 2007, 282, 18676-18685.	3.4	93
80	Cell Culture Systems for Studies of Bone and Tooth Mineralization. Chemical Reviews, 2008, 108, 4716-4733.	47.7	92
81	Infrared Spectroscopy, Microscopy, and Microscopic Imaging of Mineralizing Tissues: Spectra-Structure Correlations from Human Iliac Crest Biopsies. Journal of Biomedical Optics, 1999, 4, 14.	2.6	91
82	Gallium increases bone calcium and crystallite perfection of hydroxyapatite. Calcified Tissue International, 1986, 39, 376-381.	3.1	90
83	Fgfr4 Is Required for Effective Muscle Regeneration in Vivo. Journal of Biological Chemistry, 2006, 281, 429-438.	3.4	90
84	Intermittent and Continuous Administration of the Bisphosphonate Ibandronate in Ovariohysterectomized Beagle Dogs: Effects on Bone Morphometry and Mineral Properties. Journal of Bone and Mineral Research, 1999, 14, 1768-1778.	2.8	87
85	Notch Signaling in Osteocytes Differentially Regulates Cancellous and Cortical Bone Remodeling. Journal of Biological Chemistry, 2013, 288, 25614-25625.	3.4	87
86	Dentin Sialoprotein (DSP) Has Limited Effects on In Vitro Apatite Formation and Growth. Calcified Tissue International, 2000, 67, 472-478.	3.1	86
87	Different Forms of DMP1 Play Distinct Roles in Mineralization. Journal of Dental Research, 2010, 89, 355-359.	5.2	84
88	Filamin B mutations cause chondrocyte defects in skeletal development. Human Molecular Genetics, 2007, 16, 1661-1675.	2.9	83
89	A Controlled Study of the Effects of Alendronate in a Growing Mouse Model of Osteogenesis Imperfecta. Calcified Tissue International, 2001, 69, 94-101.	3.1	82
90	Conditional Inactivation of the CXCR4 Receptor in Osteoprecursors Reduces Postnatal Bone Formation Due to Impaired Osteoblast Development. Journal of Biological Chemistry, 2011, 286, 26794-26805.	3.4	82

#	Article	IF	CITATIONS
91	FT-IR microscopy of endochondral ossification at 20μ spatial resolution. Calcified Tissue International, 1989, 44, 20-24.	3.1	80
92	Diffusion Systems for Evaluation of Biomineralization. Calcified Tissue International, 2004, 75, 494-501.	3.1	80
93	An FT-IR microscopic investigation of the effects of tissue preservation on bone. Calcified Tissue International, 1992, 51, 72-77.	3.1	79
94	Adenosine A ₁ receptors regulate bone resorption in mice: Adenosine A ₁ receptor blockade or deletion increases bone density and prevents ovariectomyâ€induced bone loss in adenosine A ₁ receptor–knockout mice. Arthritis and Rheumatism, 2010, 62, 534-541.	6.7	79
95	Examining the Relationships Between Bone Tissue Composition, Compositional Heterogeneity, and Fragility Fracture: A Matched Case-Controlled FTIRI Study. Journal of Bone and Mineral Research, 2016, 31, 1070-1081.	2.8	77
96	Bone Mineral and Collagen Quality in Humeri of Ovariectomized Cynomolgus Monkeys Given rhPTH(1-34) for 18 Months. Journal of Bone and Mineral Research, 2003, 18, 769-775.	2.8	76
97	Effect of Hormone Replacement Therapy on Bone Quality in Early Postmenopausal Women. Journal of Bone and Mineral Research, 2003, 18, 955-959.	2.8	76
98	Studies of mineralization in tissue culture: optimal conditions for cartilage calcification. Bone and Mineral, 1992, 16, 11-36.	1.9	75
99	DSPP effects on in vivo bone mineralization. Bone, 2008, 43, 983-990.	2.9	75
100	Fourier transform infrared imaging of femoral neck bone: Reduced heterogeneity of mineral-to-matrix and carbonate-to-phosphate and more variable crystallinity in treatment-naive fracture cases compared with fracture-free controls. Journal of Bone and Mineral Research, 2013, 28, 150-161.	2.8	75
101	Fourier Transform Infrared Spectroscopic Imaging Parameters Describing Acid Phosphate Substitution in Biologic Hydroxyapatite. Calcified Tissue International, 2013, 92, 418-428.	3.1	74
102	Differential effects of alendronate treatment on bone from growing osteogenesis imperfecta and wild-type mouse. Bone, 2005, 36, 150-158.	2.9	73
103	Composition of calcifications in children with juvenile dermatomyositis: Association with chronic cutaneous inflammation. Arthritis and Rheumatism, 2006, 54, 3345-3350.	6.7	71
104	IR Microscopic Imaging of Pathological States and Fracture Healing of Bone. Applied Spectroscopy, 2000, 54, 1183-1191.	2.2	70
105	Osteopontin Facilitates Bone Resorption, Decreasing Bone Mineral Crystallinity and Content During Calcium Deficiency. Calcified Tissue International, 2003, 73, 86-92.	3.1	70
106	FTIR-I Compositional Mapping of the Cartilage-to-Bone Interface as a Function of Tissue Region and Age. Journal of Bone and Mineral Research, 2014, 29, 2643-2652.	2.8	69
107	<i>In vivo</i> hydroxyapatite formation induced by lipids. Journal of Bone and Mineral Research, 1986, 1, 409-415.	2.8	68
108	The effect of osteocalcin onIn vitro lipid-induced hydroxyapatite formation and seeded hydroxyapatite growth. Calcified Tissue International, 1985, 37, 57-62.	3.1	67

#	Article	IF	CITATIONS
109	FT-IR microscopic mappings of early mineralization in chick limb bud mesenchymal cell cultures. Calcified Tissue International, 1992, 51, 443-448.	3.1	67
110	Alendronate Treatment for Infants with Osteogenesis Imperfecta: Demonstration of Efficacy in a Mouse Model. Pediatric Research, 2002, 52, 660-670.	2.3	66
111	Processing of type I collagen gels using nonenzymatic glycation. Journal of Biomedical Materials Research - Part A, 2010, 93A, 843-851.	4.0	66
112	Microstructure and nanomechanical properties in osteons relate to tissue and animal age. Journal of Biomechanics, 2011, 44, 277-284.	2.1	63
113	Chondrogenic ATDC5 cells: An optimised model for rapid and physiological matrix mineralisation. International Journal of Molecular Medicine, 2012, 30, 1187-1193.	4.0	63
114	Quantitative Mapping of Matrix Content and Distribution across the Ligament-to-Bone Insertion. PLoS ONE, 2013, 8, e74349.	2.5	63
115	Relationship between proteolipids and calcium-phospholipid-phosphate complexes inBacterionema matruchotii calcification. Calcified Tissue International, 1980, 30, 167-174.	3.1	62
116	Does Sex Matter in Musculoskeletal Health? <sbt aid="1021074">The Influence of Sex and Gender on Musculoskeletal Health<cross-ref refid="fn1" type="fn">*</cross-ref></sbt> . Journal of Bone and Joint Surgery - Series A, 2005, 87, 1631.	3.0	61
117	Post-translational modification of osteopontin: Effects on in vitro hydroxyapatite formation and growth. Biochemical and Biophysical Research Communications, 2012, 419, 333-338.	2.1	61
118	Vibrational Spectroscopic Imaging for the Evaluation of Matrix and Mineral Chemistry. Current Osteoporosis Reports, 2014, 12, 454-464.	3.6	61
119	Biomolecular regulation, composition and nanoarchitecture of bone mineral. Scientific Reports, 2018, 8, 1191.	3.3	61
120	Calcitonin Alters Bone Quality in Beagle Dogs. Journal of Bone and Mineral Research, 1997, 12, 1936-1943.	2.8	60
121	Release of gentamicin from a tricalcium phosphate bone implant. Journal of Orthopaedic Research, 2007, 25, 23-29.	2.3	59
122	Matrix Vesicles Promote Mineralization in a Gelatin Gel. Calcified Tissue International, 1997, 60, 309-315.	3.1	57
123	Spectroscopically Determined Collagen Pyr/deH-DHLNL Cross-Link Ratio and Crystallinity Indices Differ Markedly in Recombinant Congenic Mice with Divergent Calculated Bone Tissue Strength. Connective Tissue Research, 2003, 44, 134-142.	2.3	57
124	Brief Bone Morphogenetic Protein 2 Treatment of Glucocorticoid-inhibited MC3T3-E1 Osteoblasts Rescues Commitment-associated Cell Cycle and Mineralization without Alteration of Runx2. Journal of Biological Chemistry, 2003, 278, 44995-45003.	3.4	57
125	Effect of gallium on bone mineral properties. Calcified Tissue International, 1988, 43, 300-306.	3.1	56
126	BMP-6 accelerates both chondrogenesis and mineral maturation in differentiating chick limb-bud mesenchymal cell cultures. Journal of Cellular Biochemistry, 2002, 84, 509-519.	2.6	56

#	Article	IF	CITATIONS
127	Lipids and Biomineralizations. Progress in Histochemistry and Cytochemistry, 1996, 31, III-187.	5.1	55
128	Polarized FT-IR Microscopy of Calcified Turkey Leg Tendon. Connective Tissue Research, 1996, 34, 203-211.	2.3	55
129	Homocysteine decreases chondrocyte-mediated matrix mineralization in differentiating chick limb-bud mesenchymal cell micro-mass cultures. Bone, 2001, 28, 387-398.	2.9	55
130	Inflammatory Cytokines Induce a Unique Mineralizing Phenotype in Mesenchymal Stem Cells Derived from Human Bone Marrow. Journal of Biological Chemistry, 2013, 288, 29494-29505.	3.4	55
131	MEPE's Diverse Effects on Mineralization. Calcified Tissue International, 2010, 86, 42-46.	3.1	54
132	The effect of lead on bone mineral properties from female adult C57/BL6 mice. Bone, 2010, 47, 888-894.	2.9	54
133	Assessment of bone mineral and matrix using backscatter electron imaging and FTIR imaging. Current Osteoporosis Reports, 2006, 4, 71-75.	3.6	53
134	The mechanism of β-glycerophosphate action in mineralizing chick limb-bud mesenchymal cell cultures. Journal of Bone and Mineral Research, 1996, 11, 1694-1702.	2.8	52
135	Regulating in vivo calcification of alginate microbeads. Biomaterials, 2010, 31, 4926-4934.	11.4	52
136	Effects of transforming growth factor-Î ² deficiency on bone development: A Fourier Transform-Infrared imaging analysis. Bone, 2002, 31, 675-684.	2.9	51
137	Variation in Mineral Properties in Normal and Mutant Bones and Teeth. Cells Tissues Organs, 2005, 181, 144-153.	2.3	50
138	The crystal chemistry of submandibular and parotid salivary gland stones. Journal of Oral Pathology and Medicine, 1979, 8, 284-291.	2.7	49
139	Will Biomimetics Provide New Answers for Old Problems of Calcified Tissues?. Calcified Tissue International, 1998, 63, 179-182.	3.1	49
140	MicroCT morphometry analysis of mouse cancellous bone: Intra- and inter-system reproducibility. Bone, 2011, 49, 580-587.	2.9	49
141	Variations in nanomechanical properties and tissue composition within trabeculae from an ovine model of osteoporosis and treatment. Bone, 2013, 52, 326-336.	2.9	49
142	Targeted Overexpression of Vitamin D Receptor in Osteoblasts Increases Calcium Concentration Without Affecting Structural Properties of Bone Mineral Crystals. Calcified Tissue International, 2003, 73, 251-257.	3.1	47
143	Molecular imaging promotes progress in orthopedic research. Bone, 2006, 39, 965-977.	2.9	47
144	Comparable outcomes in fracture reduction and bone properties with RANKL inhibition and alendronate treatment in a mouse model of osteogenesis imperfecta. Osteoporosis International, 2012, 23, 1141-1150.	3.1	47

#	Article	IF	CITATIONS
145	ADAM17 Controls Endochondral Ossification by Regulating Terminal Differentiation of Chondrocytes. Molecular and Cellular Biology, 2013, 33, 3077-3090.	2.3	47
146	A Mouse Model for Human Osteogenesis Imperfecta Type VI. Journal of Bone and Mineral Research, 2013, 28, 1531-1536.	2.8	47
147	Maturational changes in dentin mineral properties. Bone, 2007, 40, 1399-1407.	2.9	46
148	Co-isolation of proteolipids and calcium-phospholipid-phosphate complexes. Calcified Tissue International, 1984, 36, 214-218.	3.1	45
149	Physico-chemical properties of human plasma fibronectin binding to well characterized titanium dioxide. Colloids and Surfaces B: Biointerfaces, 1998, 11, 131-139.	5.0	45
150	Osteogenic Effect of High-frequency Acceleration on Alveolar Bone. Journal of Dental Research, 2012, 91, 413-419.	5.2	45
151	Bone tissue composition varies across anatomic sites in the proximal femur and the iliac crest. Journal of Orthopaedic Research, 2012, 30, 700-706.	2.3	44
152	The Role of Extracellular Matrix Components in Dentin Mineralization. Critical Reviews in Oral Biology and Medicine, 1991, 2, 369-387.	4.4	43
153	Fourier Transform Infrared Imaging Microspectroscopy and Tissue-Level Mechanical Testing Reveal Intraspecies Variation in Mouse Bone Mineral and Matrix Composition. Calcified Tissue International, 2008, 83, 342-353.	3.1	43
154	Age-related CXC chemokine receptor-4-deficiency impairs osteogenic differentiation potency of mouse bone marrow mesenchymal stromal stem cells. International Journal of Biochemistry and Cell Biology, 2013, 45, 1813-1820.	2.8	43
155	Fourier Transform-Infrared Microspectroscopy and Microscopic Imaging. Methods in Molecular Biology, 2008, 455, 293-303.	0.9	43
156	Biomineralization: An Overview. Connective Tissue Research, 2003, 44, 5-9.	2.3	43
157	The Effects of Noncollagenous Matrix Proteins on Hydroxyapatite Formation and Proliferation in a Collagen Gel System. Connective Tissue Research, 1989, 21, 171-178.	2.3	42
158	Reduced Tissue-Level Stiffness and Mineralization in Osteoporotic Cancellous Bone. Calcified Tissue International, 2014, 95, 125-131.	3.1	41
159	Osteoblast migration in vertebrate bone. Biological Reviews, 2018, 93, 350-363.	10.4	41
160	The effect of phosphatidylserine onin vitro hydroxyapatite growth and proliferation. Calcified Tissue International, 1991, 49, 193-196.	3.1	40
161	Strontium alters the complexed acidic phospholipid content of mineralizing tissues. Bone, 1994, 15, 425-430.	2.9	40
162	Lack of hepcidin ameliorates anemia and improves growth in an adenine-induced mouse model of chronic kidney disease. American Journal of Physiology - Renal Physiology, 2016, 311, F877-F889.	2.7	40

#	Article	IF	CITATIONS
163	Calcium-acidic phospholipid-phosphate complexes in human atherosclerotic aortas. Calcified Tissue International, 1985, 37, 121-125.	3.1	39
164	Effects of proteoglycan modification on mineral formation in a differentiating chick limb-bud mesenchymal cell culture system. Journal of Cellular Biochemistry, 1997, 64, 632-643.	2.6	39
165	Introduction of a Phe377del Mutation in ANK Creates a Mouse Model for Craniometaphyseal Dysplasia. Journal of Bone and Mineral Research, 2009, 24, 1206-1215.	2.8	39
166	Changes in lipids during matrix: Induced endochondral bone formation. Calcified Tissue International, 1983, 35, 549-554.	3.1	37
167	Matrix mineralization in hypertrophic chondrocyte cultures. Bone and Mineral, 1992, 18, 91-106.	1.9	37
168	Atypical subtrochanteric femoral shaft fractures: role for mechanics and bone quality. Arthritis Research and Therapy, 2012, 14, 220.	3.5	37
169	Nonâ€enzymatic glycation of chondrocyteâ€seeded collagen gels for cartilage tissue engineering. Journal of Orthopaedic Research, 2008, 26, 1434-1439.	2.3	36
170	Modulation of extracellular matrix protein phosphorylation alters mineralization in differentiating chick limb-bud mesenchymal cell micromass cultures. Bone, 2008, 42, 1061-1071.	2.9	36
171	Expression of Dentin Sialophosphoprotein in Non-mineralized Tissues. Journal of Histochemistry and Cytochemistry, 2011, 59, 1009-1021.	2.5	36
172	Hydroxyapatite formation in the presence of proteoglycans of reduced sulfate content: Studies in the brachymorphic mouse. Calcified Tissue International, 1991, 49, 389-393.	3.1	35
173	RANKL Inhibition Improves Bone Properties in a Mouse Model of Osteogenesis Imperfecta. Connective Tissue Research, 2010, 51, 123-131.	2.3	34
174	Rediscovering hydrogel-based double-diffusion systems for studying biomineralization. CrystEngComm, 2012, 14, 5681.	2.6	33
175	Comparison of bone tissue properties in mouse models with collagenous and non-collagenous genetic mutations using FTIRI. Bone, 2012, 51, 920-928.	2.9	33
176	Biomineralization: an overview. Connective Tissue Research, 2003, 44 Suppl 1, 5-9.	2.3	33
177	Bone particles from gallium-treated rats are resistant to resorption in vivo. Bone and Mineral, 1991, 12, 167-179.	1.9	32
178	Bone Mineral and Matrix. Orthopedic Clinics of North America, 1990, 21, 19-29.	1.2	32
179	The effects of proteoglycans from different cartilage types onin vitro hydroxyapatite proliferation. Calcified Tissue International, 1986, 39, 324-327.	3.1	31
180	Adenosine 5?-triphosphate promotes mineralization in differentiating chick limb-bud mesenchymal cell cultures. Microscopy Research and Technique, 1994, 28, 492-504.	2.2	31

#	Article	IF	CITATIONS
181	Chemical and biomechanical characterization of hyperhomocysteinemic bone disease in an animal model. BMC Musculoskeletal Disorders, 2003, 4, 2.	1.9	31
182	Clinical manifestations and pathogenesis of hydroxyapatite crystal deposition in juvenile dermatomyositis. Current Rheumatology Reports, 2006, 8, 236-243.	4.7	31
183	Fourier Transform Infrared Microscopic Imaging: Effects of Estrogen and Estrogen Deficiency on Fracture Healing in Rat Femurs. Applied Spectroscopy, 2004, 58, 1-9.	2.2	30
184	Ablation of Cathepsin K Activity in the Young Mouse Causes Hypermineralization of Long Bone and Growth Plates. Calcified Tissue International, 2009, 84, 229-239.	3.1	30
185	Studying Variations in Bone Composition at Nano-Scale Resolution: A Preliminary Report. Calcified Tissue International, 2014, 95, 413-418.	3.1	30
186	The importance of mineral in bone and mineral research. Bone, 2000, 27, 341-342.	2.9	29
187	Bone mineral properties in growing Col1a2+/G610C mice, an animal model of osteogenesis imperfecta. Bone, 2016, 87, 120-129.	2.9	29
188	The effect of gallium on seeded hydroxyapatite growth. Calcified Tissue International, 1989, 44, 138-142.	3.1	28
189	Hyaluronan interactions with Hydroxyapatite do not Alter In Vitro Hydroxyapatite Crystal Proliferation and Growth. Matrix Biology, 1991, 11, 442-446.	1.7	28
190	Characterization of Dystrophic Calcification Induced in Mice by Cardiotoxin. Calcified Tissue International, 2009, 85, 267-275.	3.1	28
191	Changes in Bone Microarchitecture and Biomechanical Properties in the th3 Thalassemia Mouse are Associated with Decreased Bone Turnover and Occur During the Period of Bone Accrual. Calcified Tissue International, 2010, 86, 484-494.	3.1	28
192	Dynamic structure and composition of bone investigated by nanoscale infrared spectroscopy. PLoS ONE, 2018, 13, e0202833.	2.5	28
193	Dissection of the osteogenic effects of laminin-332 utilizing specific LG domains: LG3 induces osteogenic differentiation, but not mineralization. Experimental Cell Research, 2008, 314, 763-773.	2.6	27
194	Crystallinity of hydroxyapatite drives myofibroblastic activation and calcification in aortic valves. Acta Biomaterialia, 2018, 71, 24-36.	8.3	27
195	The PHEX Transgene Corrects Mineralization Defects in 9-Month-Old Hypophosphatemic Mice. Calcified Tissue International, 2009, 84, 126-137.	3.1	26
196	Loss of transcription factor early growth response gene 1 results in impaired endochondral bone repair. Bone, 2011, 49, 743-752.	2.9	26
197	Regulatory role of stromal cell-derived factor-1 in bone morphogenetic protein-2-induced chondrogenic differentiation in vitro. International Journal of Biochemistry and Cell Biology, 2012, 44, 1825-1833.	2.8	26
198	Using 2D correlation analysis to enhance spectral information available from highly spatially resolved AFM-IR spectra. Journal of Molecular Structure, 2014, 1069, 284-289.	3.6	26

#	Article	IF	CITATIONS
199	Calcium-Phospholipid-Phosphate Complexes in Mineralizing Tissue. Experimental Biology and Medicine, 1978, 157, 590-593.	2.4	25
200	Sphingomyelin Degradation is a Key Factor in Dentin and Bone Mineralization: Lessons from the <i>fro/fro</i> Mouse. Journal of Dental Research, 2008, 87, 9-13.	5.2	25
201	Vitamin B6 deficiency experimentally-induced bone and joint disorder: microscopic, radiographic and biochemical evidence. British Journal of Nutrition, 1994, 71, 919-932.	2.3	24
202	Mineral Analysis Provides Insights into the Mechanism of Biomineralization. Calcified Tissue International, 2003, 72, 533-536.	3.1	24
203	The effect of osteoporosis treatments on fatigue properties of cortical bone tissue. Bone Reports, 2015, 2, 8-13.	0.4	24
204	Accelerated enamel mineralization in Dspp mutant mice. Matrix Biology, 2016, 52-54, 246-259.	3.6	24
205	Compositional mapping of the mature anterior cruciate ligamentâ€ŧoâ€bone insertion. Journal of Orthopaedic Research, 2017, 35, 2513-2523.	2.3	24
206	A Multicenter Observational Cohort Study to Evaluate the Effects of Bisphosphonate Exposure on Bone Mineral Density and Other Health Outcomes in Osteogenesis Imperfecta. JBMR Plus, 2019, 3, e10118.	2.7	22
207	Pathogenesis of cartilage calcification: Mechanisms of crystal deposition in cartilage. Current Rheumatology Reports, 2002, 4, 245-251.	4.7	21
208	Infrared imaging microscopy of bone: Illustrations from a mouse model of Fabry disease. Biochimica Et Biophysica Acta - Biomembranes, 2006, 1758, 942-947.	2.6	21
209	Examining tissue composition, whole-bone morphology and mechanical behavior of GorabPrx1 mice tibiae: A mouse model of premature aging. Journal of Biomechanics, 2017, 65, 145-153.	2.1	21
210	Imaging of Alkaline Phosphatase Activity in Bone Tissue. PLoS ONE, 2011, 6, e22608.	2.5	21
211	Mineral Changes in Osteopetrosis. Critical Reviews in Eukaryotic Gene Expression, 2003, 13, 8.	0.9	21
212	The Biochemistry of Bone. , 2001, , 107-188.		20
213	Chemical Structure-Based Three-Dimensional Reconstruction of Human Cortical Bone from Two-Dimensional Infrared Images. Applied Spectroscopy, 2002, 56, 419-422.	2.2	20
214	Expression of Phosphophoryn Is Sufficient for the Induction of Matrix Mineralization by Mammalian Cells. Journal of Biological Chemistry, 2011, 286, 20228-20238.	3.4	20
215	High- and low-dose OPG–Fc cause osteopetrosis-like changes in infant mice. Pediatric Research, 2012, 72, 495-501.	2.3	20
216	Are Changes in Composition in Response to Treatment of a Mouse Model of Osteogenesis Imperfecta Sex-dependent?. Clinical Orthopaedics and Related Research, 2015, 473, 2587-2598.	1.5	20

#	Article	IF	CITATIONS
217	Effect of in vivo loading on bone composition varies with animal age. Experimental Gerontology, 2015, 63, 48-58.	2.8	20
218	Chondrocyte apoptosis is not essential for cartilage calcification: Evidence from an in vitro avian model. Journal of Cellular Biochemistry, 2007, 100, 43-57.	2.6	18
219	Enhanced Wnt signaling improves bone mass and strength, but not brittleness, in the Col1a1 +/mov13 mouse model of type I Osteogenesis Imperfecta. Bone, 2016, 90, 127-132.	2.9	18
220	Phosphorylation regulates the secondary structure and function of dentin phosphoprotein peptides. Bone, 2017, 95, 65-75.	2.9	18
221	BMP-6 accelerates both chondrogenesis and mineral maturation in differentiating chick limb-bud mesenchymal cell cultures. Journal of Cellular Biochemistry, 2002, 84, 509-19.	2.6	18
222	Pro416Arg cherubism mutation in Sh3bp2 knock-in mice affects osteoblasts and alters bone mineral and matrix properties. Bone, 2010, 46, 1306-1315.	2.9	17
223	Evidence of altered matrix composition in iliac crest biopsies from patients with idiopathic juvenile osteoporosis. Connective Tissue Research, 2016, 57, 28-37.	2.3	17
224	The Regulatory Role of Matrix Proteins in Mineralization of Bone. , 2013, , 235-255.		16
225	The role of phosphorylation in dentin phosphoprotein peptide absorption to hydroxyapatite surfaces: a molecular dynamics study. Connective Tissue Research, 2014, 55, 134-137.	2.3	16
226	Phospholipid changes in the bones of the hypophosphatemic mouse. Bone, 1991, 12, 345-351.	2.9	15
227	Signaling in response to hypoxia and normoxia in the intervertebral disc. Arthritis and Rheumatism, 2008, 58, 3637-3639.	6.7	15
228	Differentiation and mineralization of murine mesenchymal C3H10T1/2 cells in micromass culture. Differentiation, 2010, 79, 211-217.	1.9	15
229	Osteoblast function and bone histomorphometry in a murine model of Rett syndrome. Bone, 2015, 76, 23-30.	2.9	15
230	Type I collagen influences cartilage calcification: An immunoblocking study in differentiating chick limb-bud mesenchymal cell cultures. Journal of Cellular Biochemistry, 2000, 79, 89-102.	2.6	14
231	Overexpression of IGF-Binding Protein 5 Alters Mineral and Matrix Properties in Mouse Femora: An Infrared Imaging Study. Calcified Tissue International, 2005, 76, 187-193.	3.1	14
232	Mineral and Matrix Changes in Brtl/ + Teeth Provide Insights into Mineralization Mechanisms. BioMed Research International, 2013, 2013, 1-9.	1.9	14
233	The effects of GATAâ€1 and NFâ€E2 deficiency on bone biomechanical, biochemical, and mineral properties. Journal of Cellular Physiology, 2013, 228, 1594-1600.	4.1	14
234	Fourier Transform Infrared Spectroscopy of Synthetic and Biological Apatites. , 1995, , 283-294.		14

#	Article	IF	CITATIONS
235	Phosphate modulation of calcium transport by a calcium-phospholipid-phosphate complex of calcifying tissues. Calcified Tissue International, 1984, 36, 317-319.	3.1	13
236	Mineralization, Structure and Function of Bone. , 2006, , 201-212.		13
237	Altered Bone Mechanics, Architecture and Composition in the Skeleton of TIMP-3-Deficient Mice. Calcified Tissue International, 2017, 100, 631-640.	3.1	13
238	Lipids in bone: Optimal conditions for tissue storage prior to lipid analyses. Calcified Tissue International, 1990, 46, 57-59.	3.1	12
239	Fourier transform infrared and Raman microspectroscopy and microscopic imaging of bone. Current Opinion in Orthopaedics, 2007, 18, 499-504.	0.3	12
240	Musculoskeletal Disorders and Orthopedic Conditions. JAMA - Journal of the American Medical Association, 2001, 285, 619.	7.4	11
241	Guidelines for describing mouse skeletal phenotype. Journal of Orthopaedic Research, 2003, 21, 1-5.	2.3	11
242	Mineralization, Structure and Function of Bone. , 2006, , 201-212.		11
243	Production of VEGF receptor 1 and 2 mRNA and protein during endochondral bone repair is differential and healing phase specific. Journal of Applied Physiology, 2010, 109, 1930-1938.	2.5	11
244	Early Growth Response Gene 1 Regulates Bone Properties in Mice. Calcified Tissue International, 2011, 89, 1-9.	3.1	11
245	Improved prediction of rat cortical bone mechanical behavior using composite beam theory to integrate tissue level properties. Journal of Biomechanics, 2012, 45, 2784-2790.	2.1	11
246	Heat and radiofrequency plasma glow discharge pretreatment of a titanium alloy: Eveidence for enhanced osteoinductive properties. Journal of Cellular Biochemistry, 2013, 114, 1917-1927.	2.6	11
247	Side-Effects of Convulsive Seizures and Anti-Seizure Therapy on Bone in a Rat Model of Epilepsy. Applied Spectroscopy, 2018, 72, 689-705.	2.2	11
248	Phospholipids and calcification. , 1989, , 215-243.		11
249	Identification of theoim mutation by dye terminator chemistry combined with automated direct DNA sequencing. Journal of Orthopaedic Research, 1998, 16, 38-42.	2.3	10
250	High-Resolution Imaging of Bone Precursor Cells Within the Intact Bone Marrow Cavity of Living Mice. Molecular Therapy, 2005, 12, 33-41.	8.2	10
251	Genetic Variation in Mouse Femoral Tissue-Level Mineral Content Underlies Differences in Whole Bone Mechanical Properties. Cells Tissues Organs, 2009, 189, 237-240.	2.3	10
252	The Effect of Gallium Nitrate on Healing of Vitamin D– and Phosphate–Deficient Rickets in the Immature Rat. Calcified Tissue International, 1993, 53, 400-410.	3.1	10

#	Article	IF	CITATIONS
253	Biochemical characterization of fracture callus proteoglycans. Journal of Orthopaedic Research, 1987, 5, 7-13.	2.3	9
254	Diminished material properties and altered bone structure in rat femora during pregnancy. Journal of Orthopaedic Research, 1995, 13, 41-49.	2.3	9
255	Infrared Microspectroscopic Imaging of Biomineralized Tissues using a Mercury-Cadmium-Telluride Focal-Plane Array Detector. Phosphorus, Sulfur and Silicon and the Related Elements, 1999, 144, 417-420.	1.6	9
256	Does Sex Matter in Musculoskeletal Health? A Workshop Report. Orthopedic Clinics of North America, 2006, 37, 523-529.	1.2	9
257	Changes in matrix phosphorylation during bovine dentin development. European Journal of Oral Sciences, 2007, 115, 296-302.	1.5	9
258	Is bone mineral crystal size a significant contributor to "bone quality�. BoneKEy Osteovision, 2004, 1, 4-7.	0.6	9
259	Focal adhesion kinase signaling controls cyclic tensile strain enhanced collagen I-induced osteogenic differentiation of human mesenchymal stem cells. MCB Molecular and Cellular Biomechanics, 2007, 4, 177-88.	0.7	9
260	Phosphoproteins and Biomineralization. Phosphorus, Sulfur and Silicon and the Related Elements, 1999, 144, 189-192.	1.6	8
261	The Regulatory Role of Matrix Proteins in Mineralization of Bone. , 2008, , 191-240.		8
262	Effect of HIP/ribosomal protein L29 deficiency on mineral properties of murine bones and teeth. Bone, 2010, 47, 93-101.	2.9	8
263	Osteoporosis and Osteopetrosis. , 0, , 59-79.		7
264	Influence of boneâ€derived matrices on generation of bone in an ectopic rat model. Journal of Orthopaedic Research, 2010, 28, 664-670.	2.3	7
265	Natural and Synthetic Hydroxyapatites. , 2013, , 151-161.		7
266	Ultrastructural organization of dentin in mice lacking dentin sialo-phosphoprotein. Connective Tissue Research, 2014, 55, 92-96.	2.3	7
267	Variables Reflecting the Mineralization of Bone Tissue From Fracturing Versus Nonfracturing Postmenopausal Nonosteoporotic Women. JBMR Plus, 2018, 2, 323-327.	2.7	7
268	Spectroscopically Determined Collagen Pyr/deH-DHLNL Cross-Link Ratio and Crystallinity Indices Differ Markedly in Recombinant Congenic Mice with Divergent Calculated Bone Tissue Strength. Connective Tissue Research, 2003, 44, 134-142.	2.3	7
269	Subcutaneous microvascular (capillary) calcification. Another basis for livedo-like skin changes?. Clinical and Experimental Dermatology, 1995, 20, 213-217.	1.3	6
270	Vitamin C-sulfate inhibits mineralization in chondrocyte cultures: a caveat. Matrix Biology, 2001, 20, 99-106.	3.6	6

#	Article	IF	CITATIONS
271	The role of apoptosis in mineralizing murine versus avian micromass culture systems. Journal of Cellular Biochemistry, 2010, 111, 653-658.	2.6	6
272	Bone Quality: From Bench to Bedside: Opening Editorial Comment. Clinical Orthopaedics and Related Research, 2011, 469, 2087-2089.	1.5	6
273	Changes in matrix protein gene expression associated with mineralization in the differentiating chick limbâ€bud micromass culture system. Journal of Cellular Biochemistry, 2011, 112, 607-613.	2.6	6
274	Fourier Transform Infrared Imaging Analysis of Cancellous Bone in Alendronate- and Raloxifene-Treated Osteopenic Sheep. Cells Tissues Organs, 2011, 194, 302-306.	2.3	6
275	Effects of Drugs on Bone Quality. Clinical Reviews in Bone and Mineral Metabolism, 2016, 14, 167-196.	0.8	6
276	Zoledronic acid improves bone histomorphometry in a murine model of Rett syndrome. Bone, 2017, 99, 1-7.	2.9	6
277	Skin Ultrasound Measurement as a Potential Marker of Bone Quality: A Prospective Pilot Study of Patients undergoing Lumbar Spinal Fusion. Journal of Orthopaedic Research, 2019, 37, 2508-2515.	2.3	6
278	Mineralization. , 2011, , 381-401.		5
279	Fourier Transform Infrared Spectroscopic Imaging of Fracture Healing in the Normal Mouse. Journal of Spectroscopy, 2015, 2015, 1-12.	1.3	5
280	The Organic and Inorganic Matrices. , 2004, , 91-123.		5
281	Guest Editorial: What's in a Name? The Function of the Mineralized Tissue Matrix Proteins. Journal of Dental Research, 1989, 68, 159-159.	5.2	4
282	Calcification in a Case of Circumscribed Myositis Ossificans: Figure 1 Journal of Rheumatology, 2010, 37, 876-876.	2.0	4
283	The Effects of Trifluoperazine on Calcifying Tissues in the Immature Rat. Experimental Biology and Medicine, 1984, 176, 154-163.	2.4	3
284	Effects of Surface Roughness and Maximum Load on the Mechanical Properties of Cancellous Bone Measured by Nanoindentation. Materials Research Society Symposia Proceedings, 2004, 823, W8.5.1.	0.1	3
285	The kidney sodium–phosphate co-transporter alters bone quality in an age and gender specific manner. Bone, 2013, 53, 546-553.	2.9	3
286	Mineralized Tissue. , 2014, , 31-43.		3
287	Phospholipids and calcification: An overview. Bone, 1985, 6, 474.	2.9	2
288	Cell science and protein crystal growth research for the International Space Station. Journal of Cellular Biochemistry, 2000, 79, 662-671.	2.6	2

#	Article	IF	CITATIONS
289	Molecular Imaging of Expression of Vascular Endothelial Growth Factor a (VEGF A) in Femoral Bone Grafts Transplanted into Living Mice. Cell Transplantation, 2014, 23, 901-912.	2.5	2
290	The regulatory role of matrix proteins in mineralization of bone. , 2021, , 165-187.		2
291	Biomineralization: Conflicts, challenges, and opportunities. Journal of Cellular Biochemistry, 1998, 72, 83-91.	2.6	2
292	Mineralization. , 2005, , 477-495.		2
293	THE EFFECT OF MISOPROSTOL AND PROSTANOIDS ON cAMP PRODUCTION AND CALCIFICATION IN A DIFFERENTIATING CHICK LIMB-BUD CULTURE SYSTEM. American Journal of Therapeutics, 1996, 3, 179-188.	0.9	1
294	The Biochemistry of Bone. , 2010, , 3-13.		1
295	Mineralization in Mammals. , 2018, , 383-403.		1
296	Biomineralization: Conflicts, challenges, and opportunities. , 1998, 72, 83.		1
297	Factors Contributing to Atypical Femoral Fractures. , 2016, , 125-136.		1
298	Shoulder Lesion in a 69 Year Old Woman. Journal of Long-Term Effects of Medical Implants, 2018, 28, 47-53.	0.7	1
299	Letter to the editor. Bone and Mineral, 1990, 10, 153.	1.9	0
300	Orthopaedic research in the 21st century: The new renaissance scientist. Journal of Orthopaedic Science, 1996, 1, 349-350.	1.1	0
301	Sixth International Conference on the Chemistry and Biology of Mineralized Tissues. Journal of Bone and Mineral Metabolism, 1997, 15, 107-107.	2.7	0
302	In Vitro Bio-Mineralization Process. Key Engineering Materials, 2007, 361-363, 543-546.	0.4	0
303	CORR Insights®: Fractures in Geriatric Mice Show Decreased Callus Expansion and Bone Volume. Clinical Orthopaedics and Related Research, 2014, 472, 3533-3535.	1.5	0
304	The Effect of Stontium Ranelate on Fracture Reduction in Osteogenesis Imperfecta is Comparable to Recent Bisphosphonate Data. Journal of Bone and Mineral Research, 2016, 31, 2065-2065.	2.8	0
305	Persistence of Complexed Acidic Phospholipids in Rapidly Mineralizing Tissues is Due to Affinity for Mineral and Resistance to Hydrolytic Attack: In Vitro Data. Calcified Tissue International, 1996, 58, 45-51.	3.1	0