
Yixing Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5353877/publications.pdf Version: 2024-02-01

YIXING LI

#	Article	lF	CITATIONS
1	High-Magnetization FeCo Nanochains with Ultrathin Interfacial Gaps for Broadband Electromagnetic Wave Absorption at Gigahertz. ACS Applied Materials & Interfaces, 2016, 8, 3494-3498.	8.0	152
2	Fe@C nanocapsules with substitutional sulfur heteroatoms in graphitic shells for improving microwave absorption at gigahertz frequencies. Carbon, 2018, 126, 372-381.	10.3	122
3	Oxygen-sulfur Co-substitutional Fe@C nanocapsules for improving microwave absorption properties. Science Bulletin, 2020, 65, 623-630.	9.0	100
4	Quinary Highâ€Entropyâ€Alloy@Graphite Nanocapsules with Tunable Interfacial Impedance Matching for Optimizing Microwave Absorption. Small, 2022, 18, e2107265.	10.0	60
5	Highâ€Entropyâ€Alloy Nanoparticles with Enhanced Interband Transitions for Efficient Photothermal Conversion. Angewandte Chemie - International Edition, 2021, 60, 27113-27118.	13.8	56
6	Subâ€Nanometer Fe Clusters Confined in Carbon Nanocages for Boosting Dielectric Polarization and Broadband Electromagnetic Wave Absorption. Advanced Functional Materials, 2022, 32, .	14.9	56
7	Dependence of gigahertz microwave absorption on the mass fraction of Co@C nanocapsules in composite. Journal of Alloys and Compounds, 2017, 724, 1023-1029.	5.5	55
8	Improved microwave absorption properties by atomic-scale substitutions. Carbon, 2018, 139, 181-188.	10.3	54
9	Iron/silicon carbide composites with tunable high-frequency magnetic and dielectric properties for potential electromagnetic wave absorption. Advanced Composites and Hybrid Materials, 2022, 5, 1158-1167.	21.1	53
10	Heterogeneous interfacial polarization in Fe@ZnO nanocomposites induces high-frequency microwave absorption. Materials Letters, 2017, 209, 276-279.	2.6	51
11	Highly efficient electromagnetic absorption on ZnN4-based MOFs-derived carbon composites. Carbon, 2021, 177, 44-51.	10.3	37
12	Wrinkled Titanium Carbide (MXene) with Surface Charge Polarizations through Chemical Etching for Superior Electromagnetic Interference Shielding. Angewandte Chemie - International Edition, 2022, 61,	13.8	35
13	Nickel-coated wood-derived porous carbon (Ni/WPC) for efficient electromagnetic interference shielding. Advanced Composites and Hybrid Materials, 2022, 5, 2328-2338.	21.1	31
14	High-entropy-alloy nanoparticles with 21 ultra-mixed elements for efficient photothermal conversion. National Science Review, 2022, 9, .	9.5	31
15	Ultralight Fe@C Nanocapsules/Sponge Composite with Reversibly Tunable Microwave Absorption Performances. Nanotechnology, 2017, 28, 325702.	2.6	25
16	Significant magnetocaloric and microwave absorption performances in ultrafine ErC2@C core-shell structural nanocomposites. Composites Communications, 2019, 12, 123-127.	6.3	19
17	Improved microwave absorbing properties by designing heterogeneous interfaces in Mo@2D-MoS2. Journal of Alloys and Compounds, 2018, 767, 1-6.	5.5	16
18	Wood-Derived Porous Carbon/Iron Oxide Nanoparticle Composites for Enhanced Electromagnetic Interference Shielding. ACS Applied Nano Materials, 2022, 5, 8537-8545.	5.0	15

Yixing Li

#	Article	IF	CITATIONS
19	Engineering defect concentrations of multiwalled carbon nanotubes by microwave irradiation for tunable electromagnetic absorption properties. Journal of Materials Science, 2020, 55, 13871-13880.	3.7	14
20	Multi-interfacial Co@CoN x @C(N) nanocapsules with nitrogen substitutions in graphitic shells for improving microwave absorption properties. Journal of Alloys and Compounds, 2018, 736, 51-56.	5.5	13
21	Fe@CN _{<i>x</i>} Nanocapsules for Microwave Absorption at Gigahertz Frequency. ACS Applied Nano Materials, 2019, 2, 3648-3653.	5.0	13
22	Spin excitation spectrum of a magnetic hopfion. Applied Physics Letters, 2021, 119, .	3.3	13
23	Highâ€Entropyâ€Alloy Nanoparticles with Enhanced Interband Transitions for Efficient Photothermal Conversion. Angewandte Chemie, 2021, 133, 27319-27324.	2.0	11
24	Confining Gold Nanoclusters in Highly Defective Graphitic Layers To Enhance the Methanol Electrooxidation Reaction. ChemCatChem, 2018, 10, 141-147.	3.7	9
25	Wrinkled Titanium Carbide (MXene) with Surface Charge Polarizations through Chemical Etching for Superior Electromagnetic Interference Shielding. Angewandte Chemie, 2022, 134, .	2.0	9
26	Enhanced high-frequency microwave absorption in core-shell nanocapsules with atomic-scale oxygen substitutions. Journal of Applied Physics, 2020, 127, .	2.5	7
27	Sulfur-doped wood-derived porous carbon for optimizing electromagnetic response performance. Nanoscale, 2021, 13, 16084-16093.	5.6	6
28	Synthesizing CNx heterostructures on ferromagnetic nanoparticles for improving microwave absorption property. Applied Surface Science, 2021, 564, 150480.	6.1	5
29	The modes of skyrmionium motion induced by vacancy defects on a racetrack. Journal of Magnetism and Magnetic Materials, 2021, 537, 168173.	2.3	4
30	Ultralight and ultraelastic sponge/Al@Al2O3 nanocomposite with tunable electromagnetic properties. Journal of Applied Physics, 2018, 124, .	2.5	3
31	Logical devices based on the antiferromagnetic-antimeron in a ferromagnet nanodot with gain. Applied Physics Letters, 2021, 118, 172410.	3.3	3
32	Electric-Field-Triggered Electromagnetic Polarizations in the Close-Packed Fe at C Nanocapsules. IEEE Transactions on Magnetics, 2018, 54, 1-5.	2.1	1