
Jolanta Grembecka

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5353847/publications.pdf Version: 2024-02-01

LOLANITA CREMBECKA

#	Article	IF	CITATIONS
1	EWS-FLI1 and Menin Converge to Regulate ATF4 Activity in Ewing Sarcoma. Molecular Cancer Research, 2021, 19, 1182-1195.	1.5	6
2	Discovery of first-in-class inhibitors of ASH1L histone methyltransferase with anti-leukemic activity. Nature Communications, 2021, 12, 2792.	5.8	17
3	Genome-scale CRISPR-Cas9 screen of Wnt/β-catenin signaling identifies therapeutic targets for colorectal cancer. Science Advances, 2021, 7, .	4.7	28
4	Small-molecule inhibitors targeting Polycomb repressive complex 1 RING domain. Nature Chemical Biology, 2021, 17, 784-793.	3.9	31
5	Development of potent dimeric inhibitors of GAS41 YEATS domain. Cell Chemical Biology, 2021, 28, 1716-1727.e6.	2.5	10
6	Combinatorial treatment with menin and FLT3 inhibitors induces complete remission in AML models with activating FLT3 mutations. Blood, 2020, 136, 2958-2963.	0.6	20
7	Covalent and noncovalent constraints yield a figure eight-like conformation of a peptide inhibiting the menin-MLL interaction. European Journal of Medicinal Chemistry, 2020, 207, 112748.	2.6	4
8	Covalent inhibition of NSD1 histone methyltransferase. Nature Chemical Biology, 2020, 16, 1403-1410.	3.9	52
9	Targeting epigenetic protein–protein interactions with small-molecule inhibitors. Future Medicinal Chemistry, 2020, 12, 1305-1326.	1.1	12
10	Menin inhibitor MI-3454 induces remission in MLL1-rearranged and NPM1-mutated models of leukemia. Journal of Clinical Investigation, 2020, 130, 981-997.	3.9	146
11	CEBPA-mutated leukemia is sensitive to genetic and pharmacological targeting of the MLL1 complex. Leukemia, 2019, 33, 1608-1619.	3.3	19
12	Combined MAPK Pathway and HDAC Inhibition Breaks Melanoma. Cancer Discovery, 2019, 9, 469-471.	7.7	27
13	Distinct pathways affected by menin versus MLL1/MLL2 in MLL-rearranged acute myeloid leukemia. Experimental Hematology, 2019, 69, 37-42.	0.2	13
14	Menin regulates the serine biosynthetic pathway in Ewing sarcoma. Journal of Pathology, 2018, 245, 324-336.	2.1	35
15	A tool compound targeting the core binding factor Runt domain to disrupt binding to CBFβ in leukemic cells. Leukemia and Lymphoma, 2018, 59, 2188-2200.	0.6	11
16	Pharmacologic Inhibition of the Menin–MLL Interaction Leads to Transcriptional Repression of <i>PEG10</i> and Blocks Hepatocellular Carcinoma. Molecular Cancer Therapeutics, 2018, 17, 26-38.	1.9	40
17	Validation of approximate nonempirical scoring model for menin-mixed lineage leukemia inhibitors. Theoretical Chemistry Accounts, 2018, 137, 1.	0.5	2
18	GAS41 Recognizes Diacetylated Histone H3 through a Bivalent Binding Mode. ACS Chemical Biology, 2018, 13, 2739-2746.	1.6	29

#	Article	IF	CITATIONS
19	Complexity of Blocking Bivalent Protein–Protein Interactions: Development of a Highly Potent Inhibitor of the Menin–Mixed-Lineage Leukemia Interaction. Journal of Medicinal Chemistry, 2018, 61, 4832-4850.	2.9	45
20	Stabilizing the Mixed Lineage Leukemia Protein. New England Journal of Medicine, 2017, 376, 1688-1689.	13.9	3
21	Theoretical models of inhibitory activity for inhibitors of protein–protein interactions: targeting menin–mixed lineage leukemia with small molecules. MedChemComm, 2017, 8, 2216-2227.	3.5	7
22	Gastrin Induces Nuclear Export and Proteasome Degradation of Menin in Enteric Glial Cells. Gastroenterology, 2017, 153, 1555-1567.e15.	0.6	28
23	Tumorigenicity of Ewing sarcoma is critically dependent on the trithorax proteins MLL1 and menin. Oncotarget, 2017, 8, 458-471.	0.8	29
24	H3K36 methyltransferases as cancer drug targets: rationale and perspectives for inhibitor development. Future Medicinal Chemistry, 2016, 8, 1589-1607.	1.1	37
25	BMI1 regulates PRC1 architecture and activity through homo- and hetero-oligomerization. Nature Communications, 2016, 7, 13343.	5.8	52
26	Small Molecule Inhibitor of CBFβ-RUNX Binding for RUNX Transcription Factor Driven Cancers. EBioMedicine, 2016, 8, 117-131.	2.7	84
27	Property Focused Structure-Based Optimization of Small Molecule Inhibitors of the Protein–Protein Interaction between Menin and Mixed Lineage Leukemia (MLL). Journal of Medicinal Chemistry, 2016, 59, 892-913.	2.9	56
28	Progress towards small molecule menin-mixed lineage leukemia (MLL) interaction inhibitors with in vivo utility. Bioorganic and Medicinal Chemistry Letters, 2015, 25, 2720-2725.	1.0	10
29	A small-molecule inhibitor of the aberrant transcription factor CBFβ-SMMHC delays leukemia in mice. Science, 2015, 347, 779-784.	6.0	104
30	Epigenetic regulation of IL-12-dependent T cell proliferation. Journal of Leukocyte Biology, 2015, 98, 601-613.	1.5	35
31	Targeting the MLL complex in castration-resistant prostate cancer. Nature Medicine, 2015, 21, 344-352.	15.2	165
32	Pharmacologic Inhibition of the Menin-MLL Interaction Blocks Progression of MLL Leukemia InÂVivo. Cancer Cell, 2015, 27, 589-602.	7.7	290
33	Rational Design of Orthogonal Multipolar Interactions with Fluorine in Protein–Ligand Complexes. Journal of Medicinal Chemistry, 2015, 58, 7465-7474.	2.9	70
34	Two Loops Undergoing Concerted Dynamics Regulate the Activity of the ASH1L Histone Methyltransferase. Biochemistry, 2015, 54, 5401-5413.	1.2	18
35	Targeting protein–protein interactions in hematologic malignancies: still a challenge or a great opportunity for future therapies?. Immunological Reviews, 2015, 263, 279-301.	2.8	42
36	Ash1l controls quiescence and self-renewal potential in hematopoietic stem cells. Journal of Clinical Investigation, 2015, 125, 2007-2020.	3.9	57

JOLANTA GREMBECKA

#	Article	IF	CITATIONS
37	Trithorax group genes in hematopoiesis. Oncotarget, 2015, 6, 17855-17856.	0.8	Ο
38	Challenges and opportunities in targeting the menin–MLL interaction. Future Medicinal Chemistry, 2014, 6, 447-462.	1.1	63
39	High-Affinity Small-Molecule Inhibitors of the Menin-Mixed Lineage Leukemia (MLL) Interaction Closely Mimic a Natural Protein–Protein Interaction. Journal of Medicinal Chemistry, 2014, 57, 1543-1556.	2.9	79
40	The same site on the integrase-binding domain of lens epithelium–derived growth factor is a therapeutic target for MLL leukemia and HIV. Blood, 2014, 124, 3730-3737.	0.6	30
41	Structural insights into inhibition of the bivalent menin-MLL interaction by small molecules in leukemia. Blood, 2012, 120, 4461-4469.	0.6	160
42	Menin-MLL inhibitors reverse oncogenic activity of MLL fusion proteins in leukemia. Nature Chemical Biology, 2012, 8, 277-284.	3.9	349
43	A Small Molecule Inhibitor of the CBFβ-SMMHC/RUNX Interaction Attenuates Inv(16) Leukemia in Vivo. Blood, 2012, 120, 286-286.	0.6	1
44	Crystal Structure of Menin Reveals Binding Site for Mixed Lineage Leukemia (MLL) Protein. Journal of Biological Chemistry, 2011, 286, 31742-31748.	1.6	83
45	Targeting Menin-MLL Interaction to Inhibit MLL Fusion Oncoproteins in Leukemia. Blood, 2011, 118, 2497-2497.	0.6	1
46	Targeting LEDGF Interactions in MLL Leukemia. Blood, 2011, 118, 2500-2500.	0.6	0
47	Molecular Basis of the Mixed Lineage Leukemia-Menin Interaction. Journal of Biological Chemistry, 2010, 285, 40690-40698.	1.6	73
48	Molecular Basis of Menin-MLL Interaction: Implication for Targeted Therapies in MLL Leukemias Blood, 2009, 114, 3775-3775.	0.6	2