Julio Berrios

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5353423/publications.pdf

Version: 2024-02-01

		623699	642715
30	563	14	23
papers	citations	h-index	g-index
20	20	20	670
30	30	30	679
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Advances in Cell Engineering of the Komagataella phaffii Platform for Recombinant Protein Production. Metabolites, 2022, 12, 346.	2.9	13
2	Recombinant protein production in <i>Pichia pastoris</i> : from transcriptionally redesigned strains to bioprocess optimization and metabolic modelling. FEMS Yeast Research, 2021, 21, .	2.3	21
3	Surface Immunogenic Protein of Streptococcus Group B is an Agonist of Toll-Like Receptors 2 and 4 and a Potential Immune Adjuvant. Vaccines, 2020, 8, 29.	4.4	4
4	Downregulation by organic nitrogen of <scp><i>AOX1</i></scp> promoter used for controlled expression of foreign genes in the yeast <scp><i>Pichia pastoris</i></scp> . Yeast, 2019, 36, 297-304.	1.7	9
5	Metabolic flux analysis during galactose and lactate co-consumption reveals enhanced energy metabolism in continuous CHO cell cultures. Chemical Engineering Science, 2019, 205, 201-211.	3.8	8
6	Expression of recombinant enhanced green fluorescent protein provides insight into foreign geneâ€expression differences between <scp>Mut+</scp> and <scp>MutS</scp> strains of <i>Pichia pastoris</i> i>. Yeast, 2019, 36, 285-296.	1.7	12
7	Integrating metabolic modeling and population heterogeneity analysis into optimizing recombinant protein production by Komagataella (Pichia) pastoris. Applied Microbiology and Biotechnology, 2018, 102, 63-80.	3.6	31
8	The growth of Pichia pastoris Mut+ on methanol–glycerol mixtures fits to interactive dual-limited kinetics: model development and application to optimised fed-batch operation for heterologous protein production. Bioprocess and Biosystems Engineering, 2018, 41, 1827-1838.	3.4	10
9	High glucose and low specific cell growth but not mild hypothermia improve specific r-protein productivity in chemostat culture of CHO cells. PLoS ONE, 2018, 13, e0202098.	2.5	19
10	Mild hypothermia upregulates myc and xbp1s expression and improves anti-TNF \hat{l}_{\pm} production in CHO cells. PLoS ONE, 2018, 13, e0194510.	2.5	27
11	Impact of sodium butyrate and mild hypothermia on metabolic and physiological behaviour of CHO TF 70R cells. Electronic Journal of Biotechnology, 2017, 27, 55-62.	2.2	16
12	A comparative study of glycerol and sorbitol as co-substrates in methanol-induced cultures of <i>Pichia pastoris (i): temperature effect and scale-up simulation. Journal of Industrial Microbiology and Biotechnology, 2017, 44, 407-411.</i>	3.0	28
13	Application of a new model based on oxygen balance to determine the oxygen uptake rate in mammalian cell chemostat cultures. Chemical Engineering Science, 2016, 152, 586-590.	3.8	6
14	Effect of dilution rate and methanolâ€glycerol mixed feeding on heterologous <scp><i>R< i>< scp><i>hizopus oryzae< i>hipase production with <scp><i>P< i>< scp><i>i>ichia pastoris< i><scp>M< scp>ut^{+< sup> phenotype in continuous culture. Biotechnology Progress, 2015, 31, 707-714.}</scp></i></i></scp></i></i></scp>	2.6	17
15	Batch production of coenzyme Q10 by recombinant Escherichia coli containing the decaprenyl diphosphate synthase gene from Sphingomonas baekryungensis. Journal of Industrial Microbiology and Biotechnology, 2015, 42, 1283-1289.	3.0	10
16	Endoplasmic Reticulum-Associated rht-PA Processing in CHO Cells: Influence of Mild Hypothermia and Specific Growth Rates in Batch and Chemostat Cultures. PLoS ONE, 2015, 10, e0144224.	2.5	10
17	5.3 Nutrient Media for Cell Culture Technology. , 2014, , 368-388.		O
18	Differential Effect of Culture Temperature and Specific Growth Rate on CHO Cell Behavior in Chemostat Culture. PLoS ONE, 2014, 9, e93865.	2.5	52

#	Article	IF	CITATIONS
19	Protein folding and glycosylation process are influenced by mild hypothermia in batch culture and by specific growth rate in continuous cultures of CHO cells producing rht-PA. BMC Proceedings, 2013, 7, P108.	1.6	1
20	Advances in improving mammalian cells metabolism for recombinant protein production. Electronic Journal of Biotechnology, 2013, 16, .	2.2	41
21	Simultaneous environmental manipulations in semi-perfusion cultures of CHO cells producing rh-tPA. Electronic Journal of Biotechnology, 2012, 15, .	2.2	3
22	Exploring the effect of mild hypothermia on CHO cell productivity. Biochemical Engineering Journal, 2012, 60, 1-8.	3.6	34
23	Continuous cultures for alginate production by Azotobacter vinelandii growing at different oxygen uptake rates. Process Biochemistry, 2011, 46, 1879-1883.	3.7	22
24	Continuous CHO cell cultures with improved recombinant protein productivity by using mannose as carbon source: Metabolic analysis and scale-up simulation. Chemical Engineering Science, 2011, 66, 2431-2439.	3.8	31
25	Manipulating the molecular weight of alginate produced by Azotobacter vinelandii in continuous cultures. Bioresource Technology, 2010, 101, 9405-9408.	9.6	22
26	Gibberellic acid extraction from aqueous solutions and fermentation broths by using emulsion liquid membranes. Journal of Membrane Science, 2010, 348, 91-98.	8.2	37
27	Relationship between tissue plasminogen activator production and specific growth rate in Chinese Hamster Ovary cells cultured in mannose at low temperature. Biotechnology Letters, 2009, 31, 1493-1497.	2.2	19
28	Spectrophotometric method for determining gibberellic acid in fermentation broths. Biotechnology Letters, 2004, 26, 67-70.	2.2	46
29	Permeability changes induced by polylysines in rat spermatids. Biology of the Cell, 2002, 94, 233-241.	2.0	7
30	Intracellular Ca2+ homeostasis in rat round spermatids. Biology of the Cell, 1998, 90, 391-398.	2.0	7