
Martin MikolÃ;Å;

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5353327/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Tree-Related Microhabitats Follow Similar Patterns but are More Diverse in Primary Compared to Managed Temperate Mountain Forests. Ecosystems, 2022, 25, 712-726.	1.6	12
2	Historical mixed-severity disturbances shape current diameter distributions of primary temperate Norway spruce mountain forests in Europe. Forest Ecology and Management, 2022, 503, 119772.	1.4	8
3	The 2018 European heatwave led to stem dehydration but not to consistent growth reductions in forests. Nature Communications, 2022, 13, 28.	5.8	66
4	Spatial and temporal extents of natural disturbances differentiate deadwood-inhabiting fungal communities in spruce primary forest ecosystems. Forest Ecology and Management, 2022, 517, 120272.	1.4	5
5	Disturbance history drives current compositional and diversity patterns of primary Picea abies (L.) Karst. forest vegetation. Forest Ecology and Management, 2022, 520, 120387.	1.4	6
6	Historical Disturbances Determine Current Taxonomic, Functional and Phylogenetic Diversity of Saproxylic Beetle Communities in Temperate Primary Forests. Ecosystems, 2021, 24, 37-55.	1.6	35
7	Natural dynamics of temperate mountain beech-dominated primary forests in Central Europe. Forest Ecology and Management, 2021, 479, 118522.	1.4	21
8	Historical natural disturbances shape spruce primary forest structure and indirectly influence bird assemblage composition. Forest Ecology and Management, 2021, 481, 118647.	1.4	12
9	Disturbance history is a key driver of tree life span in temperate primary forests. Journal of Vegetation Science, 2021, 32, e13069.	1.1	13
10	The impact of natural disturbance dynamics on lichen diversity and composition in primary mountain spruce forests. Journal of Vegetation Science, 2021, 32, e13087.	1.1	10
11	Natural disturbance impacts on trade-offs and co-benefits of forest biodiversity and carbon. Proceedings of the Royal Society B: Biological Sciences, 2021, 288, 20211631.	1.2	19
12	Handbook of field sampling for multi-taxon biodiversity studies in European forests. Ecological Indicators, 2021, 132, 108266.	2.6	20
13	Biomass carbon accumulation patterns throughout stand development in primary uneven-aged forest driven by mixed-severity natural disturbances. Forest Ecology and Management, 2020, 455, 117676.	1.4	9
14	Contrasting patterns of natural mortality in primary Picea forests of the Carpathian Mountains. Forest Ecology and Management, 2020, 457, 117734.	1.4	16
15	Protection gaps and restoration opportunities for primary forests in Europe. Diversity and Distributions, 2020, 26, 1646-1662.	1.9	47
16	Moderate- to High-Severity Disturbances Shaped the Structure of Primary Picea Abies (L.) Karst. Forest in the Southern Carpathians. Forests, 2020, 11, 1315.	0.9	5
17	Climate-growth relationships of Norway Spruce and silver fir in primary forests of the Croatian Dinaric mountains. Agricultural and Forest Meteorology, 2020, 288-289, 108000.	1.9	9
18	Quantifying natural disturbances using a largeâ€scale dendrochronological reconstruction to guide forest management. Ecological Applications, 2020, 30, e02189.	1.8	27

Martin MikolÃiÅi

#	Article	IF	CITATIONS
19	Temporal landscape genetic data indicate an ongoing disruption of gene flow in a relict bird species. Conservation Genetics, 2020, 21, 329-340.	0.8	9
20	Primary forest distribution and representation in a Central European landscape: Results of a large-scale field-based census. Forest Ecology and Management, 2019, 449, 117466.	1.4	45
21	Drivers of basal area variation across primary late-successional Picea abies forests of the Carpathian Mountains. Forest Ecology and Management, 2019, 435, 196-204.	1.4	19
22	Arthropod communities in fungal fruitbodies are weakly structured by climate and biogeography across European beech forests. Diversity and Distributions, 2019, 25, 783-796.	1.9	18
23	The climatic drivers of primary <i>Picea</i> forest growth along the Carpathian arc are changing under rising temperatures. Global Change Biology, 2019, 25, 3136-3150.	4.2	45
24	Disentangling the multi-faceted growth patterns of primary Picea abies forests in the Carpathian arc. Agricultural and Forest Meteorology, 2019, 271, 214-224.	1.9	20
25	Land use planning based on the connectivity of tree species does not ensure the conservation of forest biodiversity. Land Use Policy, 2019, 83, 63-65.	2.5	4
26	Considering landscape connectivity and gene flow in the Anthropocene using complementary landscape genetics and habitat modelling approaches. Landscape Ecology, 2019, 34, 521-536.	1.9	19
27	Largeâ€scale disturbance legacies and the climate sensitivity of primary <i>Picea abies</i> forests. Global Change Biology, 2018, 24, 2169-2181.	4.2	79
28	Where are Europe's last primary forests?. Diversity and Distributions, 2018, 24, 1426-1439.	1.9	268
29	Profile of tree-related microhabitats in European primary beech-dominated forests. Forest Ecology and Management, 2018, 429, 363-374.	1.4	45
30	Influence of sampling and disturbance history on climatic sensitivity of temperature-limited conifers. Holocene, 2018, 28, 1574-1587.	0.9	26
31	Forest management impacts on capercaillie (Tetrao urogallus) habitat distribution and connectivity in the Carpathians. Landscape Ecology, 2017, 32, 163-179.	1.9	43
32	Old trees as a key source of epiphytic lichen persistence and spatial distribution in mountain Norway spruce forests. Biodiversity and Conservation, 2017, 26, 1943-1958.	1.2	13
33	Mixed-severity natural disturbances promote the occurrence of an endangered umbrella species in primary forests. Forest Ecology and Management, 2017, 405, 210-218.	1.4	35
34	Longâ€ŧerm responses of canopy–understorey interactions to disturbance severity in primary <i>Picea abies</i> forests. Journal of Vegetation Science, 2017, 28, 1128-1139.	1.1	16
35	More ways than one: Mixed-severity disturbance regimes foster structural complexity via multiple developmental pathways. Forest Ecology and Management, 2017, 406, 410-426.	1.4	78
36	A matter of time: self-regulated tree regeneration in a natural Norway spruce (Picea abies) forest at Mt. Brocken, Germany. European Journal of Forest Research, 2017, 136, 907-921.	1.1	7

#	Article	IF	CITATIONS
37	The historical disturbance regime of mountain Norway spruce forests in the Western Carpathians and its influence on current forest structure and composition. Forest Ecology and Management, 2017, 388, 67-78.	1.4	103
38	The legacy of disturbance on individual tree and stand-level aboveground biomass accumulation and stocks in primary mountain Picea abies forests. Forest Ecology and Management, 2016, 373, 108-115.	1.4	30
39	Genetic differentiation of western capercaillie in the Carpathian Mountains: the importance of post glacial expansions and habitat connectivity. Biological Journal of the Linnean Society, 2015, 116, 873-889.	0.7	21
40	Evaluating forest management intensity on an umbrella species: Capercaillie persistence in central Europe. Forest Ecology and Management, 2015, 354, 26-34.	1.4	42
41	Landscapeâ€level variability in historical disturbance in primary <i><scp>P</scp>icea abies</i> mountain forests of the <scp>E</scp> astern <scp>C</scp> arpathians, <scp>R</scp> omania. Journal of Vegetation Science, 2014, 25, 386-401.	1.1	99
42	A mixed severity disturbance regime in the primary Picea abies (L.) Karst. forests of the Ukrainian Carpathians. Forest Ecology and Management, 2014, 334, 144-153.	1.4	78
43	Evaluating the mitigation effectiveness of forests managed for conservation versus commodity production using an Australian example. Conservation Letters, 0, , .	2.8	2