

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5353220/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Discrete Boltzmann modeling of plasma shock wave. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2023, 237, 2532-2548.	1.1	10
2	Discrete Boltzmann modeling of detonation: Based on the Shakhov model. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2023, 237, 2517-2531.	1.1	7
3	Effects of the initial perturbations on the Rayleigh—Taylor—Kelvin—Helmholtz instability system. Frontiers of Physics, 2022, 17, 1.	2.4	14
4	Non-equilibrium characteristics of mass and heat transfers in the slip flow. AIP Advances, 2022, 12, .	0.6	8
5	A multi-feature predicting model of crown evolution involving material properties. AIP Advances, 2022, 12, 055104.	0.6	0
6	Discrete Boltzmann modeling of Rayleigh-Taylor instability: Effects of interfacial tension, viscosity, and heat conductivity. Physical Review E, 2022, 106, .	0.8	12
7	Discrete Boltzmann modeling of high-speed compressible flows with various depths of non-equilibrium. Physics of Fluids, 2022, 34, .	1.6	19
8	Multiple-relaxation-time discrete Boltzmann modeling of multicomponent mixture with nonequilibrium effects. Physical Review E, 2021, 103, 013305.	0.8	20
9	Delineation of the flow and mixing induced by Rayleigh–Taylor instability through tracers. Physics of Fluids, 2021, 33, .	1.6	17
10	Influence of thermal barrier coating on partially premixed combustion in internal combustion engine. Fuel, 2021, 303, 121259.	3.4	9
11	Kinetic modeling of multiphase flow based on simplified Enskog equation. Frontiers of Physics, 2020, 15, 1.	2.4	16
12	Morphological and non-equilibrium analysis of coupled Rayleigh–Taylor–Kelvin–Helmholtz instability. Physics of Fluids, 2020, 32, .	1.6	27
13	Frictional effect of bottom wall on granular flow through an aperture on a conveyor belt. Powder Technology, 2020, 367, 421-426.	2.1	3
14	Knudsen Number Effects on Two-Dimensional Rayleigh–Taylor Instability in Compressible Fluid: Based on a Discrete Boltzmann Method. Entropy, 2020, 22, 500.	1.1	20
15	Two-fluid discrete Boltzmann model for compressible flows: Based on ellipsoidal statistical Bhatnagar–Gross–Krook. Physics of Fluids, 2020, 32, .	1.6	11
16	Comparative study on several criteria for non-equilibrium phase separation. AIP Conference Proceedings, 2019, , .	0.3	0
17	Nonequilibrium and morphological characterizations of Kelvin–Helmholtz instability in compressible flows. Frontiers of Physics, 2019, 14, 1.	2.4	41
18	A One-Dimensional Discrete Boltzmann Model for Detonation and an Abnormal Detonation Phenomenon. Communications in Theoretical Physics, 2019, 71, 117.	1.1	6

#	Article	IF	CITATIONS
19	Morphology Effect of Surface Structures on Microchannel Flow Using Lattice Boltzmann Method. Geofluids, 2019, 2019, 1-14.	0.3	4
20	Entropy production in thermal phase separation: a kinetic-theory approach. Soft Matter, 2019, 15, 2245-2259.	1.2	27
21	Discrete Boltzmann method for non-equilibrium flows: Based on Shakhov model. Computer Physics Communications, 2019, 238, 50-65.	3.0	29
22	Microflow effects on the hydraulic aperture of single rough fractures. Advances in Geo-Energy Research, 2019, 3, 104-114.	3.1	24
23	Discrete ellipsoidal statistical BGK model and Burnett equations. Frontiers of Physics, 2018, 13, 1.	2.4	24
24	Discrete Boltzmann Method with Maxwell-Type Boundary Condition for Slip Flow. Communications in Theoretical Physics, 2018, 69, 77.	1.1	19
25	Three-dimensional discrete Boltzmann models for compressible flows in and out of equilibrium. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2018, 232, 477-490.	1.1	9
26	Comparative study of discrete Boltzmann model and Navier-Stokes. Journal of Physics: Conference Series, 2018, 1113, 012015.	0.3	1
27	Collaboration and competition between Richtmyer-Meshkov instability and Rayleigh-Taylor instability. Physics of Fluids, 2018, 30, .	1.6	38
28	Discrete Boltzmann model for implosion- and explosionrelated compressible flow with spherical symmetry. Frontiers of Physics, 2018, 13, 1.	2.4	15
29	Discrete Boltzmann trans-scale modeling of high-speed compressible flows. Physical Review E, 2018, 97, 053312.	0.8	58
30	Discrete Boltzmann modeling of Rayleigh-Taylor instability in two-component compressible flows. Physical Review E, 2017, 96, 053305.	0.8	41
31	Complex fields in heterogeneous materials under shock: modeling, simulation and analysis. Science China: Physics, Mechanics and Astronomy, 2016, 59, 1.	2.0	18
32	Nonequilibrium thermohydrodynamic effects on the Rayleigh-Taylor instability in compressible flows. Physical Review E, 2016, 94, 023106.	0.8	75
33	Viscosity, heat conductivity, and Prandtl number effects in the Rayleigh–Taylor Instability. Frontiers of Physics, 2016, 11, 1.	2.4	42
34	Kinetic modeling of detonation and effects of negative temperature coefficient. Combustion and Flame, 2016, 173, 483-492.	2.8	40
35	Double-distribution-function discrete Boltzmann model for combustion. Combustion and Flame, 2016, 164, 137-151.	2.8	76
36	Multiple-relaxation-time lattice Boltzmann kinetic model for combustion. Physical Review E, 2015, 91, 043306.	0.8	73

#	Article	IF	CITATIONS
37	Discrete Boltzmann modeling of multiphase flows: hydrodynamic and thermodynamic non-equilibrium effects. Soft Matter, 2015, 11, 5336-5345.	1.2	115
38	Lattice Boltzmann kinetic modeling and simulation of thermal liquid–vapor system. International Journal of Modern Physics C, 2014, 25, 1441002.	0.8	2
39	Polar Coordinate Lattice Boltzmann Kinetic Modeling of Detonation Phenomena. Communications in Theoretical Physics, 2014, 62, 737-748.	1.1	20
40	Polar-coordinate lattice Boltzmann modeling of compressible flows. Physical Review E, 2014, 89, 013307.	0.8	47
41	Two-dimensional MRT LB model for compressible and incompressible flows. Frontiers of Physics, 2014, 9, 246-254.	2.4	12
42	Simulation study on cavity growth in ductile metal materials under dynamic loading. Frontiers of Physics, 2013, 8, 394-404.	2.4	1
43	Lattice Boltzmann model for combustion and detonation. Frontiers of Physics, 2013, 8, 94-110.	2.4	56
44	Cellular Automata Model for Elastic Solid Material. Communications in Theoretical Physics, 2013, 59, 59-67.	1.1	6
45	Attractive and repulsive contributions of localized excitability inhomogeneities and elimination of spiral waves in excitable media. Physical Review E, 2013, 88, 022920.	0.8	16
46	Lattice BGK kinetic model for high-speed compressible flows: Hydrodynamic and nonequilibrium behaviors. Europhysics Letters, 2013, 103, 24003.	0.7	49
47	FFT-LB Modeling of Thermal Liquid-Vapor System. Communications in Theoretical Physics, 2012, 57, 681-694.	1.1	16
48	DYNAMICS IN EXCITABLE MEDIA SUBJECTED TO A SPECIFIC SPATIOTEMPORAL WAVE UNDER TWO SCHEMES. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2012, 22, 1250148.	0.7	0
49	Physical modeling of multiphase flow via lattice Boltzmann method: Numerical effects, equation of state and boundary conditions. Frontiers of Physics, 2012, 7, 481-490.	2.4	18
50	Dynamics of spiral waves driven by a dichotomous periodic signal. Nonlinear Dynamics, 2012, 70, 1719-1730.	2.7	13
51	Lattice Boltzmann study of thermal phase separation: Effects of heat conduction, viscosity and Prandtl number. Europhysics Letters, 2012, 97, 44002.	0.7	31
52	Lattice Boltzmann modeling and simulation of compressible flows. Frontiers of Physics, 2012, 7, 582-600.	2.4	100
53	é«~应å•率拉ä¼,ä,‹çº³ç±³ç©ºæ´žçš"æ´æ,ä,Žæ—©æœŸç"Ÿé•¿. Scientia Sinica: Physica, Mechanica Et Astronc	om ioa ; 201 	2, 2 42, 464-4
54	Flux Limiter Lattice Boltzmann Scheme Approach to Compressible Flows with Flexible Specific-Heat Ratio and Prandtl Number. Communications in Theoretical Physics, 2011, 56, 490-498.	1.1	22

4

#	Article	IF	CITATIONS
55	Spiral waves in excitable media due to noise and periodic forcing. Chaos, Solitons and Fractals, 2011, 44, 728-738.	2.5	11
56	Dynamical similarity in shock wave response of porous material: From the view of pressure. Computers and Mathematics With Applications, 2011, 61, 3618-3627.	1.4	12
57	Multiple-relaxation-time lattice Boltzmann model for compressible fluids. Physics Letters, Section A: General, Atomic and Solid State Physics, 2011, 375, 2129-2139.	0.9	33
58	Phase separation in thermal systems: A lattice Boltzmann study and morphological characterization. Physical Review E, 2011, 84, 046715.	0.8	47
59	Prandtl number effects in MRT lattice Boltzmann models for shocked and unshocked compressible fluids. Theoretical and Applied Mechanics Letters, 2011, 1, 052004.	1.3	7
60	Lattice Boltzmann study on Kelvin-Helmholtz instability: Roles of velocity and density gradients. Physical Review E, 2011, 83, 056704.	0.8	62
61	Flux Limiter Lattice Boltzmann for Compressible Flows. Communications in Theoretical Physics, 2011, 56, 333-338.	1.1	10
62	Multiple-Relaxation-Time Lattice Boltzmann Approach to Richtmyer—Meshkov Instability. Communications in Theoretical Physics, 2011, 55, 325-334.	1.1	15
63	Cluster identification and characterization of physical fields. Science China: Physics, Mechanics and Astronomy, 2010, 53, 1610-1618.	2.0	4
64	Temperature pattern dynamics in shocked porous materials. Science China: Physics, Mechanics and Astronomy, 2010, 53, 1466-1474.	2.0	6
65	Shock wave response of porous materials: from plasticity to elasticity. Physica Scripta, 2010, 81, 055805.	1.2	4
66	Control of spiral-wave dynamics using feedback signals from line detectors. Europhysics Letters, 2010, 90, 10013.	0.7	16
67	Three-Dimensional Lattice Boltzmann Model for High-Speed Compressible Flows. Communications in Theoretical Physics, 2010, 54, 1121-1128.	1.1	30
68	Multiple-relaxation-time lattice Boltzmann approach to compressible flows with flexible specific-heat ratio and Prandtl number. Europhysics Letters, 2010, 90, 54003.	0.7	68
69	Simulation Study of Shock Reaction on Porous Material. Communications in Theoretical Physics, 2009, 51, 691-699.	1.1	6
70	A Drosophila Protein Family Implicated in Pheromone Perception Is Related to Tay-Sachs GM2-Activator Protein. Journal of Biological Chemistry, 2009, 284, 585-594.	1.6	33
71	Morphological characterization of shocked porous material. Journal Physics D: Applied Physics, 2009, 42, 075409.	1.3	15
72	Dynamics and Thermodynamics of Porous HMX-like Material Under Shock. Communications in Theoretical Physics, 2009, 52, 901-908.	1.1	8

#	Article	IF	CITATIONS
73	Simulating liquid-vapor phase separation under shear with lattice Boltzmann method. Science in China Series G: Physics, Mechanics and Astronomy, 2009, 52, 1337-1344.	0.2	3
74	Highly Efficient Lattice Boltzmann Model for Compressible Fluids: Two-Dimensional Case. Communications in Theoretical Physics, 2009, 52, 681-693.	1.1	25
75	Two-dimensional lattice Boltzmann model for compressible flows with high Mach number. Physica A: Statistical Mechanics and Its Applications, 2008, 387, 1721-1732.	1.2	79
76	Finite-Difference Lattice Boltzmann Scheme for High-Speed Compressible Flow: Two-Dimensional Case. Communications in Theoretical Physics, 2008, 50, 201-210.	1.1	9
77	Three-Dimensional Multi-mesh Material Point Method for Solving Collision Problems. Communications in Theoretical Physics, 2008, 49, 1129-1138.	1.1	27
78	Generalized interpolation material point approach to high melting explosive with cavities under shock. Journal Physics D: Applied Physics, 2008, 41, 015401.	1.3	23
79	Material-point simulation of cavity collapse under shock. Journal of Physics Condensed Matter, 2007, 19, 326212.	0.7	13
80	LATTICE BOLTZMANN APPROACH TO HIGH-SPEED COMPRESSIBLE FLOWS. International Journal of Modern Physics C, 2007, 18, 1747-1764.	0.8	38
81	Simulations of complex fluids by mixed lattice Boltzmann—finite difference methods. Physica A: Statistical Mechanics and Its Applications, 2006, 362, 42-47.	1.2	29
82	Lattice BBGKY scheme for two-phase flows: One-dimensional case. Mathematics and Computers in Simulation, 2006, 72, 249-252.	2.4	9
83	Two-Dimensional Lattice Boltzmann Methods Based on Sirovich's Kinetic Theory. Progress of Theoretical Physics Supplement, 2006, 162, 197-203.	0.2	7
84	Morphologies and flow patterns in quenching of lamellar systems with shear. Physical Review E, 2006, 74, 011505.	0.8	54
85	Two-dimensional finite-difference lattice Boltzmann method for the complete Navier-Stokes equations of binary fluids. Europhysics Letters, 2005, 69, 214-220.	0.7	29
86	Finite-difference lattice-Boltzmann methods for binary fluids. Physical Review E, 2005, 71, 066706.	0.8	48
87	RESPONSE OF AUTONOMIC NERVOUS SYSTEM TO BODY POSITIONS: FOURIER AND WAVELET ANALYSIS. Modern Physics Letters B, 2005, 19, 59-78.	1.0	3
88	THREE-DIMENSIONAL LATTICE BOLTZMANN MODEL RESULTS FOR COMPLEX FLUIDS ORDERING. International Journal of Modern Physics C, 2005, 16, 1819-1830.	0.8	1
89	Scaling and hydrodynamic effects in lamellar ordering. Europhysics Letters, 2005, 71, 651-657.	0.7	46
90	Phase separation of incompressible binary fluids with lattice Boltzmann methods. Physica A: Statistical Mechanics and Its Applications, 2004, 331, 10-22.	1.2	67

#	Article	IF	CITATIONS
91	Numerical study of the ordering properties of lamellar phase. Physica A: Statistical Mechanics and Its Applications, 2004, 344, 750-756.	1.2	23
92	Phase-separating binary fluids under oscillatory shear. Physical Review E, 2003, 67, 056105.	0.8	73
93	Rheology and Structure of Quenched Binary Mixtures Under Oscillatory Shear. Communications in Theoretical Physics, 2003, 39, 729-736.	1.1	8
94	Nondestructive identification of impurities in granular medium. Applied Physics Letters, 2002, 81, 4868-4870.	1.5	78
95	Driven Diatomic Frenkel–Kontorova Model: Resonant Steps, Spatiotemporal Dynamics and Dynamical Phase Diagrams. Communications in Theoretical Physics, 2001, 35, 229-240.	1.1	0
96	Power-Law Behavior in Signal Scattering Process in Vertical Granular Chain with Light Impurities. Communications in Theoretical Physics, 2001, 36, 699-704.	1.1	4
97	Soliton-Like Pulses in Vertical Granular Chain Under Gravity: Particle-Like or Wave-Like?. Communications in Theoretical Physics, 2001, 35, 106-113.	1.1	2
98	Power-Law in Depth-Dependence of Signal Speed in Vertical Granular Chain. Communications in Theoretical Physics, 2001, 36, 199-202.	1.1	1
99	Effects of gravity and nonlinearity on the waves in the granular chain. Physical Review E, 2001, 63, 061310.	0.8	40
100	PHASE DIAGRAMS OF TWO FKD MODELS WITH DIFFERENT TRIPLE-WELL INTERACTIONS. Modern Physics Letters B, 2000, 14, 725-732.	1.0	0
101	Study on one-dimensional CI phase transition with triple-well interactions. Chinese Physics B, 2000, 9, 42-48.	1.3	0
102	Ground States of a Generalized Frenkel-Kontorova Model. Communications in Theoretical Physics, 2000, 34, 419-432.	1.1	0
103	Study on the Quantum FK Model. Communications in Theoretical Physics, 1999, 31, 355-360.	1.1	0
104	Study on Two Generalized FK Models. Communications in Theoretical Physics, 1999, 31, 189-198.	1.1	0
105	Generalized Frenkel-Kontorova model: A diatomic chain in a sinusoidal potential. Physical Review B, 1998, 58, 721-733.	1.1	12
106	Ground states of one-dimensional commensurate-incommensurate transition models with double-well interactions. Physical Review B, 1998, 57, 2771-2779.	1.1	5
107	Phase diagrams of two generalized FK models. Physics Letters, Section A: General, Atomic and Solid State Physics, 1997, 233, 99-104.	0.9	3
108	Dynamic Fracture of Ductile Metals at High Strain Rate. Advanced Materials Research, 0, 790, 65-68.	0.3	1

#	Article	IF	CITATIONS
109	Discrete Boltzmann Modeling of Compressible Flows. , 0, , .		6
110	General Index and Its Application in MD Simulations. , 0, , .		1

General Index and Its Application in MD Simulations. , 0, , . 110