
Steven A Juliano

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5352667/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Ecology of invasive mosquitoes: effects on resident species and on human health. Ecology Letters, 2005, 8, 558-574.	3.0	428
2	SPECIES INTRODUCTION AND REPLACEMENT AMONG MOSQUITOES: INTERSPECIFIC RESOURCE COMPETITION OR APPARENT COMPETITION?. Ecology, 1998, 79, 255-268.	1.5	309
3	Embryonic exposure to corticosterone modifies the juvenile stress response, oxidative stress and telomere length. Proceedings of the Royal Society B: Biological Sciences, 2012, 279, 1447-1456.	1.2	282
4	Desiccation and thermal tolerance of eggs and the coexistence of competing mosquitoes. Oecologia, 2002, 130, 458-469.	0.9	255
5	Species Interactions Among Larval Mosquitoes: Context Dependence Across Habitat Gradients. Annual Review of Entomology, 2009, 54, 37-56.	5.7	252
6	Convergent Habitat Segregation of <l>Aedes aegypti</l> and <l>Aedes albopictus</l> (Diptera: Culicidae) in Southeastern Brazil and Florida. Journal of Medical Entomology, 2003, 40, 785-794.	0.9	232
7	Precipitation and Temperature Effects on Populations of <i>Aedes albopictus</i> (Diptera: Culicidae): Implications for Range Expansion. Journal of Medical Entomology, 2001, 38, 646-656.	0.9	217
8	A field test for competitive effects of Aedes albopictus on A. aegypti in South Florida: differences between sites of coexistence and exclusion?. Oecologia, 2004, 139, 583-593.	0.9	195
9	Ecology of invasive mosquitoes: effects on resident species and on human health. Ecology Letters, 2005, 8, 558-74.	3.0	195
10	LARVAL COMPETITION DIFFERENTIALLY AFFECTS ARBOVIRUS INFECTION IN AEDES MOSQUITOES. Ecology, 2005, 86, 3279-3288.	1.5	161
11	Invertebrate Carcasses as a Resource for Competing <i>Aedes albopictus</i> and <i>Aedes aegypti</i> (Diptera: Culicidae). Journal of Medical Entomology, 2000, 37, 364-372.	0.9	131
12	Temperature Effects on the Dynamics of <i>Aedes albopictus</i> (Diptera: Culicidae) Populations in the Laboratory. Journal of Medical Entomology, 2001, 38, 548-556.	0.9	129
13	Consequences of detritus type in an aquatic microsystem: effects on water quality, micro-organisms and performance of the dominant consumer. Freshwater Biology, 2006, 51, 448-459.	1.2	123
14	Detritus Type Alters the Outcome of Interspecific Competition Between <i>Aedes aegypti</i> and <i>Aedes albopictus</i> (Diptera: Culicidae). Journal of Medical Entomology, 2008, 45, 375-383.	0.9	120
15	CONDITION-SPECIFIC COMPETITION IN CONTAINER MOSQUITOES: THE ROLE OF NONCOMPETING LIFE-HISTORY STAGES. Ecology, 2005, 86, 3289-3295.	1.5	101
16	Asymmetrical Competition and Patterns of Abundance of <i>Aedes albopictus</i> and <i>Culex pipiens</i> (Diptera: Culicidae). Journal of Medical Entomology, 2005, 42, 559-570.	0.9	98
17	Effect of leaf litter and density on fitness and population performance of the hole mosquito Aedes triseriatus. Ecological Entomology, 1995, 20, 125-136.	1.1	93
18	Predicting Species Interactions Based on Behaviour: Predation and Competition in Container-Dwelling Mosquitoes. Journal of Animal Ecology, 1996, 65, 63.	1.3	92

#	Article	IF	CITATIONS
19	The significance of ratios of detritus types and microâ€organism productivity to competitive interactions between aquatic insect detritivores. Journal of Animal Ecology, 2007, 76, 1105-1115.	1.3	92
20	Predation and the evolution of prey behavior: an experiment with tree hole mosquitoes. Behavioral Ecology, 2002, 13, 301-311.	1.0	91
21	POPULATION DYNAMICS. Journal of the American Mosquito Control Association, 2007, 23, 265-275.	0.2	87
22	Food Limitation of Reproduction and Survival For Populations of Brachinus (Coleoptera: Carabidae). Ecology, 1986, 67, 1036-1045.	1.5	85
23	Asymmetrical Competition and Patterns of Abundance of <i>Aedes albopictus</i> and <i>Culex pipiens</i> (Diptera: Culicidae). Journal of Medical Entomology, 2005, 42, 559-570.	0.9	81
24	Escape from gregarine parasites affects the competitive interactions of an invasive mosquito. Biological Invasions, 2002, 4, 283-297.	1.2	80
25	The effects of body size on mating and reproduction in Brachinus lateralis (Coleoptera: Carabidae). Ecological Entomology, 1985, 10, 271-280.	1.1	79
26	Title is missing!. Biological Invasions, 2001, 3, 151-166.	1.2	74
27	Effects of habitat drying on size at and time to metamorphosis in the tree hole mosquito Aedes triseriatus. Oecologia, 1994, 97, 369-376.	0.9	72
28	Invertebrate Carcasses as a Resource for Competing <1>Aedes albopictus 1 and <1>Aedes aegypti 1 (Diptera: Culicidae). Journal of Medical Entomology, 2000, 37, 364-372.	0.9	72
29	Impacts of Climate, Land Use, and Biological Invasion on the Ecology of Immature Aedes Mosquitoes: Implications for La Crosse Emergence. EcoHealth, 2012, 9, 217-228.	0.9	71
30	Differential Survivorship of Invasive Mosquito Species in South Florida Cemeteries: Do Site-Specific Microclimates Explain Patterns of Coexistence and Exclusion?. Annals of the Entomological Society of America, 2010, 103, 757-770.	1.3	70
31	The Relationship between Vulnerability to Predation and Behavior of Larval Treehole Mosquitoes: Geographic and Ontogenetic Differences. Oikos, 1992, 63, 465.	1.2	68
32	Abundance matters: a field experiment testing the more individuals hypothesis for richness–productivity relationships. Oecologia, 2007, 153, 153-162.	0.9	68
33	Spatial and Temporal Habitat Segregation of Mosquitoes in Urban Florida. PLoS ONE, 2014, 9, e91655.	1.1	66
34	Coexistence, Exclusion, or Neutrality? A Meta-Analysis of Competition between Aedes Albopictus and Resident Mosquitoes. Israel Journal of Ecology and Evolution, 2010, 56, 325-351.	0.2	65
35	Functional Response of Larval and Adult Stages of <i>Hippodamia variegata</i> (Coleoptera:) Tj ETQq1 1 0.78431 Entomology, 2010, 39, 1586-1592.	.4 rgBT /O 0.7	verlock 10 Tf 64
36	Larval feeding behavior of three co-occurring species of container mosquitoes. Journal of Vector Ecology, 2004, 29, 315-22.	0.5	62

#	Article	IF	CITATIONS
37	Modification of Antipredator Behavior of Caecidotea Intermedius by Its Parasite Acanthocephalus Dirus. Ecology, 1993, 74, 710-713.	1.5	61
38	Threat-Sensitive Behavioral Responses to Concentrations of Water-Borne Cues from Predation. Ethology, 2007, 113, 199-206.	0.5	61
39	Superior reproductive success on human blood without sugar is not limited to highly anthropophilic mosquito species. Medical and Veterinary Entomology, 2006, 20, 53-59.	0.7	59
40	Environmental Correlates of Abundances of Mosquito Species and Stages in Discarded Vehicle Tires. Journal of Medical Entomology, 2010, 47, 53-62.	0.9	59
41	Distributions of Competing Container Mosquitoes Depend on Detritus Types, Nutrient Ratios, and Food Availability. Annals of the Entomological Society of America, 2011, 104, 688-698.	1.3	58
42	EFFECTS OF A PREDATOR ON PREY METAMORPHOSIS: PLASTIC RESPONSES BY PREY OR SELECTIVE MORTALITY?. Ecology, 1997, 78, 838-851.	1.5	56
43	Plasticity of insect reproduction: testing models of flexible and fixed development in response to different growth rates. Oecologia, 1998, 115, 492-500.	0.9	55
44	Spatial and temporal patterns of coexistence between competing Aedes mosquitoes in urban Florida. Oecologia, 2009, 160, 343-352.	0.9	54
45	Hatching asynchrony in the house wren, Troglodytes aedon: a test of the brood-reduction hypothesis. Behavioral Ecology, 1992, 3, 76-83.	1.0	52
46	Negative effects of habitat drying and prior exploitation on the detritus resource in an ephemeral aquatic habitat. Oecologia, 1998, 115, 137-148.	0.9	52
47	Behavioural responses of larval container mosquitoes to a size-selective predator. Ecological Entomology, 2007, 32, 262-272.	1.1	52
48	Attracted to the enemy: Aedes aegypti prefers oviposition sites with predator-killed conspecifics. Oecologia, 2014, 175, 481-492.	0.9	52
49	Larval mosquito communities in discarded vehicle tires in a forested and unforested site: detritus type, amount, and water nutrient differences. Journal of Vector Ecology, 2007, 32, 207.	0.5	51
50	Interpopulation divergence in competitive interactions of the mosquito <i>Aedes albopictus</i> . Ecology, 2009, 90, 2405-2413.	1.5	51
51	Interspecific Differences in Feeding Behavior and Survival Under Food-Limited Conditions for Larval <i>Aedes albopictus</i> and <i>Aedes aegypti</i> (Diptera: Culicidae). Annals of the Entomological Society of America, 2004, 97, 720-728.	1.3	50
52	Geographic Variation in Adult Survival and Reproductive Tactics of the Mosquito <i>Aedes albopictus</i> . Journal of Medical Entomology, 2008, 45, 210-221.	0.9	44
53	Where vectors collide: the importance of mechanisms shaping the realized niche for modeling ranges of invasive Aedes mosquitoes. Biological Invasions, 2018, 20, 1913-1929.	1.2	44
54	FURTHER DIFFICULTIES IN THE ANALYSIS OF FUNCTIONAL-RESPONSE EXPERIMENTS AND A RESOLUTION. Canadian Entomologist, 1985, 117, 631-640.	0.4	43

#	Article	IF	CITATIONS
55	Interpopulation differences in competitive effect and response of the mosquito Aedes aegypti and resistance to invasion by a superior competitor. Oecologia, 2010, 164, 221-230.	0.9	42
56	Do natural container habitats impede invader dominance? Predator-mediated coexistence of invasive and native container-dwelling mosquitoes. Oecologia, 2008, 155, 631-639.	0.9	41
57	Your worst enemy could be your best friend: predator contributions to invasion resistance and persistence of natives. Oecologia, 2010, 162, 709-718.	0.9	41
58	She's a femme fatale: low-density larval development produces good disease vectors. Memorias Do Instituto Oswaldo Cruz, 2014, 109, 1070-1077.	0.8	41
59	Long-term dynamics of a predator used for biological control and decoupling from mosquito prey in a subtropical treehole ecosystem. Oecologia, 1997, 111, 189-200.	0.9	40
60	Environmental Correlates of Abundances of Mosquito Species and Stages in Discarded Vehicle Tires. Journal of Medical Entomology, 2010, 47, 53-62.	0.9	39
61	Amphetamine augments vesicular dopamine release in the dorsal and ventral striatum through different mechanisms. Journal of Neurochemistry, 2013, 125, 373-385.	2.1	38
62	Amphetamine Elicits Opposing Actions on Readily Releasable and Reserve Pools for Dopamine. PLoS ONE, 2013, 8, e60763.	1.1	36
63	Direct and Indirect Effects of Animal Detritus on Growth, Survival, and Mass of Invasive Container Mosquito Aedes albopictus (Diptera: Culicidae). Journal of Medical Entomology, 2007, 44, 580-588.	0.9	34
64	Seasonal Photoperiods Alter Developmental Time and Mass of an Invasive Mosquito, <i>Aedes albopictus</i> (Diptera: Culicidae), Across Its North-South Range in the United States. Journal of Medical Entomology, 2012, 49, 825-832.	0.9	34
65	Seasonal Differences in Density But Similar Competitive Impact of Aedes albopictus (Skuse) on Aedes aegypti (L.) in Rio de Janeiro, Brazil. PLoS ONE, 2016, 11, e0157120.	1.1	33
66	Hemolymph ecdysteroids do not affect vitellogenesis in the lubber grasshopper. Archives of Insect Biochemistry and Physiology, 2003, 52, 45-57.	0.6	31
67	Seasonal variation in competition and coexistence of <i><scp>A</scp>edes</i> mosquitoes: stabilizing effects of resources?. Journal of Animal Ecology, 2013, 82, 256-265.	1.3	31
68	Tickâ€, mosquitoâ€, and rodentâ€borne parasite sampling designs for the National Ecological Observatory Network. Ecosphere, 2016, 7, e01271.	1.0	31
69	Direct and Indirect Effects of Animal Detritus on Growth, Survival, and Mass of Invasive Container Mosquito <l>Aedes albopictus</l> (Diptera: Culicidae). Journal of Medical Entomology, 2007, 44, 580-588.	0.9	30
70	Behavior and Risk of Predation in Larval Tree Hole Mosquitoes: Effects of Hunger and Population History of Predation. Oikos, 1993, 68, 229.	1.2	29
71	Maximum Titers of Vitellogenin and Total Hemolymph Protein Occur during the Canalized Phase of Grasshopper Egg Production. Physiological and Biochemical Zoology, 2001, 74, 885-893.	0.6	29
72	How can mortality increase population size? A test of two mechanistic hypotheses. Ecology, 2018, 99, 1660-1670.	1.5	29

#	Article	IF	CITATIONS
73	Effects of the Facultative Predator Anopheles barberi on Population Performance of its Prey Aedes triseriatus (Diptera Culicidae). Annals of the Entomological Society of America, 1998, 91, 33-42.	1.3	28
74	Geographic variation of reproductive tactics in lubber grasshoppers. Oecologia, 2002, 132, 517-523.	0.9	27
75	Stable isotope analysis reveals detrital resource base sources of the tree hole mosquito, <i>Aedes triseriatus</i> . Ecological Entomology, 2010, 35, 586-593.	1.1	27
76	Phylogeography of Aedes aegypti (Yellow Fever Mosquito) in South Florida: mtDNA Evidence for Human-Aided Dispersal. American Journal of Tropical Medicine and Hygiene, 2013, 89, 482-488.	0.6	27
77	Specificity in host-fungus associations: Do mutualists differ from antagonists?. Evolutionary Ecology, 1991, 5, 385-392.	0.5	26
78	Juvenile hormone is a marker of the onset of reproductive canalization in lubber grasshoppers. Insect Biochemistry and Molecular Biology, 2000, 30, 821-827.	1.2	26
79	Impact of inter―and intraâ€specific competition among larvae on larval, adult, and lifeâ€ŧable traits of <i><scp>A</scp>edes aegypti</i> and <i><scp>A</scp>edes albopictus</i> females. Ecological Entomology, 2016, 41, 192-200.	1.1	26
80	ON THE EVOLUTION OF HANDLING TIME. Evolution; International Journal of Organic Evolution, 1985, 39, 212-215.	1.1	25
81	Costs of reproduction and geographic variation in the reproductive tactics of the mosquito Aedes triseriatus. Oecologia, 1999, 120, 59-68.	0.9	25
82	Testing for context-dependence in a processing chain interaction among detritus-feeding aquatic insects. Ecological Entomology, 2002, 27, 541-553.	1.1	25
83	Geographic Variation of Photoperiodic Diapause but Not Adult Survival or Reproduction of the Invasive Mosquito Aedes albopictus (Diptera: Culicidae) in North America. Annals of the Entomological Society of America, 2011, 104, 1309-1318.	1.3	25
84	Predation resistance does not trade off with competitive ability in early-colonizing mosquitoes. Oecologia, 2013, 173, 1033-1042.	0.9	25
85	Survival, Development, and Size of Larval Tiger Beetles: Effects of Food and Water. Ecology, 1988, 69, 1983-1992.	1.5	24
86	Effects of growth rates on development to metamorphosis in the lubber grasshopper, Romalea microptera. Oecologia, 2000, 125, 162-169.	0.9	24
87	Richness–productivity relationships between trophic levels in a detritus-based system: significance of abundance and trophic linkage. Oecologia, 2007, 154, 377-385.	0.9	24
88	Stageâ€dependent predation on competitors: consequences for the outcome of a mosquito invasion. Journal of Animal Ecology, 2009, 78, 928-936.	1.3	24
89	Amphetamine augments action potentialâ€dependent dopaminergic signaling in the striatum <i>in vivo</i> . Journal of Neurochemistry, 2011, 117, 937-948.	2.1	24
90	Oviposition habitat selection by containerâ€dwelling mosquitoes: responses to cues of larval and detritus abundances in the field. Ecological Entomology, 2014, 39, 245-252.	1.1	24

#	Article	IF	CITATIONS
91	What does not kill them makes them stronger: larval environment and infectious dose alter mosquito potential to transmit filarial worms. Proceedings of the Royal Society B: Biological Sciences, 2014, 281, 20140459.	1.2	23
92	INFLUENCE OF HOST AGE ON HOST ACCEPTABILITY AND SUITABILITY FOR A SPECIES OF <i>TRICHOGRAMMA</i> (HYMENOPTERA: TRICHOGRAMMATIDAE) ATTACKING AQUATIC DIPTERA. Canadian Entomologist, 1982, 114, 713-720.	0.4	22
93	Changes in structure and composition of an assemblage of Hydroporus species (Coleoptera:) Tj ETQq1 1 0.78431	.4.rgBT /O 1.2	verlock 10 22
94	Functional Responses Revisited. Environmental Entomology, 1996, 25, 549-550.	0.7	22
95	Functional responses of two chrysopid predators feeding onHelicoverpa armigera (lep.: noctuidae) and aphis gossypii (hom.: aphididae). Entomophaga, 1996, 41, 141-151.	0.2	22
96	Plasticity and Canalization in the Control of Reproduction in the Lubber Grasshopper. Integrative and Comparative Biology, 2003, 43, 635-645.	0.9	22
97	Interspecific and Intraspecific Differences in Foraging Preferences of Container-Dwelling Mosquitoes. Journal of Medical Entomology, 2007, 44, 215-221.	0.9	22
98	Nature of Predation Risk Cues in Container Systems: Mosquito Responses to Solid Residues from Predation. Annals of the Entomological Society of America, 2010, 103, 1038-1045.	1.3	22
99	Concurrent effects of resource pulse amount, type, and frequency on community and population properties of consumers in detritus-based systems. Oecologia, 2012, 169, 511-522.	0.9	22
100	Ecological interactions in <i>Aedes</i> species on Reunion Island. Medical and Veterinary Entomology, 2013, 27, 387-397.	0.7	22
101	Sexually dimorphic body size and development time plasticity in mosquitoes (Diptera: Culicidae). Evolutionary Ecology Research, 2014, 16, 223-234.	2.0	22
102	Chrysomelid Beetles on Water Lily Leaves: Herbivore Density, Leaf Survival, and Herbivore Maturation. Ecology, 1988, 69, 1294-1298.	1.5	21
103	Geographic Variation in Vulnerability to Predation and Starvation in Larval Treehole Mosquitoes. Oikos, 1989, 56, 99.	1.2	20
104	Hungerâ€dependent and sexâ€specific antipredator behaviour of larvae of a sizeâ€dimorphic mosquito. Ecological Entomology, 2014, 39, 548-555.	1.1	20
105	How Do Trait-Mediated Non-lethal Effects of Predation Affect Population-Level Performance of Mosquitoes?. Frontiers in Ecology and Evolution, 2019, 7, .	1.1	20
106	PLASTICITY AND CANALIZATION OF INSECT REPRODUCTION: TESTING ALTERNATIVE MODELS OF LIFE HISTORY TRANSITIONS. Ecology, 2004, 85, 2986-2996.	1.5	19
107	Design for mosquito abundance, diversity, and phenology sampling within the National Ecological Observatory Network. Ecosphere, 2016, 7, e01320.	1.0	18
108	Extrinsic vs. intrinsic food shortage and the strength of feeding links: effects of density and food availability on feeding rate of Hyphydrus ovatus. Oecologia, 1990, 83, 535-540.	0.9	17

#	Article	IF	CITATIONS
109	Reproductive Responses to Photoperiod by a South Florida Population of the Grasshopper <i>Romalea microptera</i> (Orthoptera: Romaleidae). Environmental Entomology, 2002, 31, 702-707.	0.7	17
110	Leaf Scraping Beetle Feces are a Food Resource for Tree Hole Mosquito Larvae. American Midland Naturalist, 2003, 150, 181-184.	0.2	16
111	Behavioral Responses of <i>Aedes albopictus</i> to a Predator Are Correlated with Size-Dependent Risk of Predation. Annals of the Entomological Society of America, 2008, 101, 1150-1153.	1.3	15
112	Contributions of temporal segregation, oviposition choice, and non-additive effects of competitors to invasion success of Aedes japonicus (Diptera: Culicidae) in North America. Biological Invasions, 2015, 17, 1669-1681.	1.2	15
113	Context-dependent interactive effects of non-lethal predation on larvae impact adult longevity and body composition. PLoS ONE, 2018, 13, e0192104.	1.1	15
114	Habitat associations, resources, and predators of an assemblage of Brachinus (Coleoptera: Carabidae) from southeastern Arizona. Canadian Journal of Zoology, 1985, 63, 1683-1691.	0.4	14
115	No detectable role for predators mediating effects of aquatic habitat size and permanence on populations and communities of containerâ€dwelling mosquitoes. Ecological Entomology, 2017, 42, 439-448.	1.1	14
116	Interpopulation Variation in Developmental Titers of Vitellogenin, but Not Storage Proteins, in Lubber Grasshoppers. Physiological and Biochemical Zoology, 2004, 77, 631-640.	0.6	13
117	Plasticity of grasshopper vitellogenin production in response to diet is primarily a result of changes in fat body mass. Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology, 2006, 176, 27-34.	0.7	13
118	Geographic Variation in Size and Oviposition Depths of <i>Romalea microptera</i> (Orthoptera:) Tj ETQq0 0 0 r America, 2010, 103, 227-235.	gBT /Overlo 1.3	ock 10 Tf 50 3 13
119	Finding the sweet spot: What levels of larval mortality lead to compensation or overcompensation in adult production?. Ecosphere, 2019, 10, e02855.	1.0	13
120	Know Your Enemy: Effects of a Predator on Native and Invasive Container Mosquitoes. Journal of Medical Entomology, 2019, 56, 320-328.	0.9	13
121	Interspecific and intraspecific differences in foraging preferences of container-dwelling mosquitoes. Journal of Medical Entomology, 2007, 44, 215-21.	0.9	13
122	Developmental response to a seasonal time constraint: the effects of photoperiod on reproduction in the grasshopper <i>Romalea microptera</i> . Ecological Entomology, 2007, 32, 559-566.	1.1	12
123	Geographic differences in the body sizes of adult Romalea microptera. Journal of Orthoptera Research, 2008, 17, 135-139.	0.4	12
124	No Evolutionary Response to Four Generations of Laboratory Selection on Antipredator Behavior of <i>Aedes albopictus</i> : Potential Implications for Biotic Resistance to Invasion. Journal of Medical Entomology, 2009, 46, 772-781.	0.9	12
125	Wing Shape as an Indicator of Larval Rearing Conditions for <i>Aedes albopictus</i> and <i>Aedes aegypti</i> (Diptera: Culicidae). Journal of Medical Entomology, 2012, 49, 927-938.	0.9	12
126	Bone-Remodeling Transcript Levels Are Independent of Perching in End-of-Lay White Leghorn Chickens. International Journal of Molecular Sciences, 2015, 16, 2663-2677.	1.8	12

#	Article	IF	CITATIONS
127	Modafinil Activates Phasic Dopamine Signaling in Dorsal and Ventral Striata. Journal of Pharmacology and Experimental Therapeutics, 2016, 359, 460-470.	1.3	12
128	Competitive Abilities in Experimental Microcosms Are Accurately Predicted by a Demographic Index for R*. PLoS ONE, 2012, 7, e43458.	1.1	12
129	Queueing models of predation and the importance of contingent behavioural choices for optimal foragers. Animal Behaviour, 1989, 38, 757-770.	0.8	11
130	An empirical test of the aggregation model of coexistence and consequences for competing containerâ€dwelling mosquitoes. Ecology, 2013, 94, 478-488.	1.5	11
131	The demographic and lifeâ€history costs of fear: Traitâ€mediated effects of threat of predation on <i>Aedes triseriatus</i> . Ecology and Evolution, 2019, 9, 3794-3806.	0.8	11
132	Effects of Habitat Type and Drying on <i>Ascogregarina barretti</i> (Eugregarinida: Lecudinidae) Infection in <i>Aedes triseritatus</i> (Diptera: Culicidae). Journal of Medical Entomology, 2000, 37, 950-956.	0.9	10
133	Factors affecting the abundance of scirtid beetles in container habitats. Journal of the North American Benthological Society, 2001, 20, 109-117.	3.0	10
134	Intrinsic and extrinsic drivers of succession: effects of habitat age and season on an aquatic insect community. Ecological Entomology, 2014, 39, 316-324.	1.1	10
135	Are behavioural responses to predation cues linked across life cycle stages?. Ecological Entomology, 2017, 42, 77-85.	1.1	10
136	Effects of larval density on a natural population of <scp><i>Culex restuans</i></scp> (Diptera:) Tj ETQq0 0 0 rgE	T /Overloo 1.1	ck 10 Tf 50 38
137	Impacts of fungal entomopathogens on survival and immune responses of Aedes albopictus and Culex pipiens mosquitoes in the context of native Wolbachia infections. PLoS Neglected Tropical Diseases, 2021, 15, e0009984.	1.3	10
138	Simulated Seasonal Photoperiods and Fluctuating Temperatures Have Limited Effects on Blood Feeding and Life History in <i>Aedes triseriatus</i> (Diptera: Culicidae). Journal of Medical Entomology, 2015, 52, 896-906.	0.9	9
139	TRICHOGRAMMA SPP. (HYMENOPTERA: TRICHOGRAMMATIDAE) AS EGG PARASITOIDS OF SEPEDON FUSCIPENNIS (DIPTERA: SCIOMYZIDAE) AND OTHER AQUATIC DIPTERA. Canadian Entomologist, 1981, 113, 271-279.	0.4	8
140	Geographic Variation in Aedes triseriatus (Diptera: Culicidae): Temperature–Dependent Effects of a Predator on Survival of Larvae. Environmental Entomology, 1996, 25, 624-631.	0.7	8
141	A multifaceted trophic cascade in a detritus-based system: density-, trait-, or processing-chain-mediated effects?. Ecosphere, 2015, 6, art32.	1.0	8
142	The roles of history: age and prior exploitation in aquatic container habitats have immediate and carryâ€over effects on mosquito life history. Ecological Entomology, 2017, 42, 704-711.	1.1	8
143	Invasions by Mosquitoes: The Roles of Behaviour Across the Life Cycle. , 2016, , 245-265.		7
144	Aedes albopictus (Diptera: Culicidae) Has Not Become the Dominant Species in Artificial Container Habitats in a Temperate Forest More Than a Decade After Establishment. Journal of Medical Entomology, 2021, 58, 950-955.	0.9	7

#	Article	IF	CITATIONS
145	Avian Hatching Asynchrony: Brood Classification Based on Discriminant Function Analysis of Nestling Masses. Ecology, 1993, 74, 1191-1196.	1.5	6
146	How do Nutritional Stress and La Crosse Virus Infection Interact? Tests for Effects on Willingness to Blood Feed and Fecundity in <i>Aedes albopictus</i> (Diptera: Culicidae). Journal of Medical Entomology, 2016, 53, 166-171.	0.9	6
147	Predation yields greater population performance: what are the contributions of density―and traitâ€mediated effects?. Ecological Entomology, 2021, 46, 56-65.	1.1	6
148	ARE REPRODUCTIVE TACTICS DETERMINED BY LOCAL ECOLOGY IN ROMALEA MICROPTERA (ORTHOPTERA:) Tj	ETQq0 0 () rgBT /Overlo

149	Densityâ€dependent polyphenism and geographic variation in size among two populations of lubber grasshoppers (<i>Romalea microptera</i>). Ecological Entomology, 2009, 34, 644-651.	1.1	4
150	Ontogenetic Mechanisms Underlying a Geographic Size Cline in a Grasshopper, <1>Romalea microptera 1 . Annals of the Entomological Society of America, 2009, 102, 467-475.	1.3	4
151	Complex Effects of Superior Competitors and Resources on Culex restuans (Diptera: Culicidae) Oviposition. Journal of Medical Entomology, 2018, 55, 360-369.	0.9	4
152	Detrimental effects of a failed infection by a co-invasive parasite on a native congeneric parasite and its native host. Biological Invasions, 2021, 23, 1637-1648.	1.2	4
153	How do noncompetent hosts cause dilution of parasitism? Testing hypotheses for native and invasive mosquitoes. Ecology, 2021, 102, e03452.	1.5	4
154	Non-linear relationships between density and demographic traits in three Aedes species. Scientific Reports, 2022, 12, 8075.	1.6	4
155	SPECIES INTRODUCTION AND REPLACEMENT AMONG MOSQUITOES: INTERSPECIFIC RESOURCE COMPETITION OR APPARENT COMPETITION?. , 1998, 79, 255.		1
156	How Can Mortality Increase Population Size? A Test of Two Mechanistic Hypotheses. Bulletin of the Ecological Society of America, 2018, 99, 340-342.	0.2	0