Maria Angeles Moreno

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5352196/publications.pdf

Version: 2024-02-01

95 papers 2,691 citations

32 h-index 206112 48 g-index

95 all docs 95 docs citations 95 times ranked 1828 citing authors

#	Article	IF	CITATIONS
1	Evaluation of the Antioxidant Capacity, Phenolic Compounds, and Vitamin C Content of Different Peach and Nectarine [Prunus persica (L.) Batsch] Breeding Progenies. Journal of Agricultural and Food Chemistry, 2009, 57, 4586-4592.	5.2	174
2	Physiological, biochemical and molecular responses in four Prunus rootstocks submitted to drought stress. Tree Physiology, 2013, 33, 1061-1075.	3.1	132
3	Influence of almond × peach hybrids rootstocks on flower and leaf mineral concentration, yield and vigour of two peach cultivars. Scientia Horticulturae, 2005, 106, 502-514.	3.6	96
4	Phenotypic diversity and relationships of fruit quality traits in peach and nectarine [Prunus persica (L.) Batsch] breeding progenies. Euphytica, 2010, 171, 211.	1.2	87
5	Chilling injury susceptibility in an intra-specific peach [Prunus persica (L.) Batsch] progeny. Postharvest Biology and Technology, 2010, 58, 79-87.	6.0	86
6	Influence of different vigour cherry rootstocks on leaves and shoots mineral composition. Scientia Horticulturae, 2007, 112, 73-79.	3 . 6	84
7	Analysis of phenotypic variation of sugar profile in different peach and nectarine [<i>Prunus persica</i> (L.) Batsch] breeding progenies. Journal of the Science of Food and Agriculture, 2009, 89, 1909-1917.	3. 5	73
8	Genetic diversity of Prunus rootstocks analyzed by RAPD markers. Euphytica, 1999, 110, 139-149.	1.2	66
9	Population structure and marker–trait associations for pomological traits in peach and nectarine cultivars. Tree Genetics and Genomes, 2013, 9, 331-349.	1.6	65
10	Evaluation of Antioxidant Compounds and Total Sugar Content in a Nectarine [Prunus persica (L.) Batsch] Progeny. International Journal of Molecular Sciences, 2011, 12, 6919-6935.	4.1	63
11	Mapping QTLs associated with fruit quality traits in peach [Prunus persica (L.) Batsch] using SNP maps. Tree Genetics and Genomes, 2016, 12, 1.	1.6	60
12	Tolerance Response to Iron Chlorosis of Prunus Selections as Rootstocks. Hortscience: A Publication of the American Society for Hortcultural Science, 2008, 43, 304-309.	1.0	60
13	Metabolic response in roots of Prunus rootstocks submitted to iron chlorosis. Journal of Plant Physiology, 2011, 168, 415-423.	3 . 5	58
14	Influence of peach–almond hybrids and plum-based rootstocks on mineral nutrition and yield characteristics of †Big Top' nectarine in replant and heavy-calcareous soil conditions. Scientia Horticulturae, 2015, 192, 475-481.	3.6	57
15	Changes in Cell/Tissue Organization and Peroxidase Activity as Markers for Early Detection of Graft Incompatibility in Peach/Plum Combinations. Journal of the American Society for Horticultural Science, 2010, 135, 9-17.	1.0	55
16	Graft Compatibility Between Peach Cultivars and Prunus Rootstocks. Hortscience: A Publication of the American Society for Hortcultural Science, 2006, 41, 1389-1394.	1.0	54
17	Influence of antioxidant compounds, total sugars and genetic background on the chilling injury susceptibility of a nonâ€melting peach (<i>Prunus persica</i> (L.) Batsch) progeny. Journal of the Science of Food and Agriculture, 2015, 95, 351-358.	3.5	51
18	Flower and Foliar Analysis for Prognosis of Sweet Cherry Nutrition: Influence of Different Rootstocks. Journal of Plant Nutrition, 2004, 27, 701-712.	1.9	50

#	Article	IF	CITATIONS
19	Growth, yield and fruit quality of  Van' and  Stark Hardy Giant' sweet cherry cultivars as influenced by grafting on different rootstocks. Scientia Horticulturae, 2010, 123, 329-335.	y 3.6	50
20	Phenotypic diversity among local Spanish and foreign peach and nectarine [Prunus persica (L.) Batsch] accessions. Euphytica, 2014, 197, 261-277.	1.2	48
21	Peach., 2012,, 505-569.		44
22	Agronomical and fruit quality traits of two peach cultivars on peach-almond hybrid rootstocks growing on Mediterranean conditions. Scientia Horticulturae, 2012, 140, 157-163.	3.6	41
23	Influence of plum rootstocks on agronomic performance, leaf mineral nutrition and fruit quality of †Catherina' peach cultivar in heavy-calcareous soil conditions. Spanish Journal of Agricultural Research, 2017, 15, e0901.	0.6	41
24	Performance of â€~Sunburst' sweet cherry grafted on different rootstocks. Journal of Horticultural Science and Biotechnology, 2001, 76, 167-173.	1.9	39
25	Elemental 2-D mapping and changes in leaf iron and chlorophyll in response to iron re-supply in iron-deficient GF 677 peach-almond hybrid. Plant and Soil, 2009, 315, 93-106.	3.7	38
26	Physiological responses and differential gene expression in Prunus rootstocks under iron deficiency conditions. Journal of Plant Physiology, 2011, 168, 887-893.	3.5	37
27	Molecular characterization and genetic diversity of Prunus rootstocks. Scientia Horticulturae, 2009, 120, 237-245.	3.6	36
28	Performance of peach and plum based rootstocks of different vigour on a late peach cultivar in replant and calcareous conditions. Scientia Horticulturae, 2011, 129, 58-63.	3.6	36
29	Performance of Prunus rootstocks for apricot in Mediterranean conditions. Scientia Horticulturae, 2010, 124, 354-359.	3.6	35
30	Horticultural, leaf mineral and fruit quality traits of two â€~Greengage' plum cultivars budded on plum based rootstocks in Mediterranean conditions. Scientia Horticulturae, 2018, 232, 84-91.	3.6	35
31	Sugars and organic acids profile and antioxidant compounds of nectarine fruits influenced by different rootstocks. Scientia Horticulturae, 2019, 248, 145-153.	3.6	35
32	Chloroplast DNA Diversity in Prunus and Its Implication on Genetic Relationships. Journal of the American Society for Horticultural Science, 2007, 132, 670-679.	1.0	35
33	The performance of Adara as a cherry rootstock. Scientia Horticulturae, 1996, 65, 85-91.	3.6	34
34	BREEDING AND SELECTION OF PRUNUS ROOTSTOCKS AT THE AULA DEI EXPERIMENTAL STATION, ZARAGOZA, SPAIN. Acta Horticulturae, 2004, , 519-528.	0.2	34
35	Agronomical Parameters, Sugar Profile and Antioxidant Compounds of "Catherine―Peach Cultivar Influenced by Different Plum Rootstocks. International Journal of Molecular Sciences, 2014, 15, 2237-2254.	4.1	33
36	Resistance of Peach and Plum Rootstocks from Spain, France, and Italy to Root-knot Nematode Meloidogyne javanica. Hortscience: A Publication of the American Society for Hortcultural Science, 1999, 34, 1259-1262.	1.0	33

#	Article	IF	CITATIONS
37	Analysis of the genetic diversity and structure of the Spanish apple genetic resources suggests the existence of an Iberian genepool. Annals of Applied Biology, 2017, 171, 424-440.	2.5	31
38	Genetic variability of introduced and local Spanish peach cultivars determined by SSR markers. Tree Genetics and Genomes, 2011, 7, 257-270.	1.6	30
39	Association Mapping Analysis for Fruit Quality Traits in Prunus persica Using SNP Markers. Frontiers in Plant Science, 2018, 9, 2005.	3.6	30
40	Agronomic and physicochemical fruit properties of â€~Big Top' nectarine budded on peach and plum based rootstocks in Mediterranean conditions. Scientia Horticulturae, 2016, 210, 85-92.	3.6	28
41	EFFECT OF SEVERAL PEACH x ALMOND HYBRID ROOTSTOCKS ON FRUIT QUALITY OF PEACHES. Acta Horticulturae, 2004, , 321-326.	0.2	27
42	Fruit sugar profile and antioxidants of peach and nectarine cultivars on almond×peach hybrid rootstocks. Scientia Horticulturae, 2013, 164, 563-572.	3.6	27
43	Performance of Adafuel and Adarcias as Peach Rootstocks. Hortscience: A Publication of the American Society for Hortcultural Science, 1994, 29, 1271-1273.	1.0	27
44	Assessment of genetic diversity and relatedness among Tunisian almond germplasm using SSR markers. Hereditas, 2010, 147, 283-292.	1.4	25
45	Scion × Rootstock Response on Production, Mineral Composition and Fruit Quality under Heavy-Calcareous Soil and Hot Climate. Agronomy, 2020, 10, 1159.	3.0	25
46	Molecular characterization of Miraflores peach variety and relatives using SSRs. Scientia Horticulturae, 2007, 111, 140-145.	3.6	24
47	Long-term graft compatibility study of peach-almond hybrid and plum based rootstocks budded with European and Japanese plums. Scientia Horticulturae, 2019, 243, 392-400.	3.6	23
48	Aptitude for mycorrhizal root colonization in Prunus rootstocks. Scientia Horticulturae, 2004, 100, 39-49.	3.6	22
49	Anatomical graft compatibility study between apricot cultivars and different plum based rootstocks. Scientia Horticulturae, 2018, 237, 67-73.	3.6	22
50	Performance of â€~Subirana' flat peach cultivar budded on different Prunus rootstocks in a warm production area in North Africa. Scientia Horticulturae, 2016, 206, 24-32.	3.6	21
51	Genetic origin and climate determine fruit quality and antioxidant traits on apple (Malus x domestica) Tj ETQq1	1 0,784314	4 rgBT /Overlo
52	Genome-wide SNP identification in Prunus rootstocks germplasm collections using Genotyping-by-Sequencing: phylogenetic analysis, distribution of SNPs and prediction of their effect on gene function. Scientific Reports, 2020, 10, 1467.	3.3	21
53	INFLUENCE OF ROOTSTOCK ON THE MINERAL CONCENTRATIONS OF FLOWERS AND LEAVES FROM SWEET CHERRY. Acta Horticulturae, 1997, , 163-168.	0.2	18
54	Biochemical Characterization and Differential Expression of PAL Genes Associated With "Translocated―Peach/Plum Graft-Incompatibility. Frontiers in Plant Science, 2021, 12, 622578.	3.6	16

#	Article	IF	Citations
55	Optimizing protocols to evaluate brown rot (Monilinia laxa) susceptibility in peach and nectarine fruits. Australasian Plant Pathology, 2017, 46, 183-189.	1.0	15
56	Potential of new Prunus cerasifera based rootstocks for adapting under heavy and calcareous soil conditions. Scientia Horticulturae, 2018, 234, 193-200.	3.6	14
57	Protein and amino acid content in compatible and incompatible peach/plum grafts. The Journal of Horticultural Science, 1994, 69, 955-962.	0.3	13
58	EFFECT OF SEVERAL ROOTSTOCKS ON FRUIT QUALITY OF 'SUNBURST' SWEET CHERRY. Acta Horticulturae, 2004, , 353-358.	0.2	13
59	Effect of Genetics and Climate on Apple Sugars and Organic Acids Profiles. Agronomy, 2022, 12, 827.	3.0	13
60	Phenotypic diversity of Spanish apple (Malus x domestica Borkh) accessions grown at the vulnerable climatic conditions of the Ebro Valley, Spain. Scientia Horticulturae, 2015, 185, 200-210.	3.6	12
61	Exploring Genome-Wide Diversity in the National Peach (Prunus persica) Germplasm Collection at CITA (Zaragoza, Spain). Agronomy, 2021, 11, 481.	3.0	11
62	FLORAL ANALYSIS: FRESH AND DRY WEIGHT OF FLOWERS FROM DIFFERENT FRUIT TREE SPECIES. Acta Horticulturae, 1997, , 233-240.	0.2	9
63	Genetic analysis of iron chlorosis tolerance in Prunus rootstocks. Tree Genetics and Genomes, 2012, 8, 943-955.	1.6	9
64	Seleção de progênies e genitores de pessegueiro com base nas caracterÃsticas dos frutos. Revista Brasileira De Fruticultura, 2011, 33, 170-179.	0.5	8
65	Leaf mineral nutrition and tree vigor of †Subirana†Mflat peach cultivar grafted on different <i>Prunus</i> rootstocks in a warm Mediterranean area. Journal of Plant Nutrition, 2020, 43, 811-822.	1.9	8
66	Prunus hybrids rootstocks for flat peach. Scientia Agricola, 2012, 69, 13-18.	1.2	7
67	GRAFT COMPATIBILITY FOR NEW PEACH ROOTSTOCKS IN NURSERY. Acta Horticulturae, 2006, , 327-330.	0.2	6
68	Divergência genética entre progênies de pessegueiro em Zaragoza, Espanha. Revista Brasileira De Fruticultura, 2011, 33, 303-310.	0.5	6
69	Effect of eight different rootstocks on agronomic and fruit quality parameters of two sweet cherry cultivars in Mediterranean conditions. Acta Horticulturae, 2017, , 315-320.	0.2	6
70	GENETIC DIVERSITY OF PRUNUS ROOTSTOCKS USING MICROSATELLITE MARKERS. Acta Horticulturae, 2004, , 625-628.	0.2	6
71	RESPONSE OF LOW AND MEDIUM VIGOUR ROOTSTOCKS FOR PEACH TO BIOTIC AND ABIOTIC STRESSES. Acta Horticulturae, 2012, , 627-632.	0.2	5
72	Effects of Auxin (Indole-3-butyric Acid) on Adventitious Root Formation in Peach-Based Prunus Rootstocks. Plants, 2022, 11, 913.	3.5	5

#	Article	IF	CITATIONS
73	QTL ANALYSIS OF FRUIT QUALITY TRAITS IN PEACH [PRUNUS PERSICA (L.) BATSCH] USING DENSE SNP MAPS. Acta Horticulturae, 2015, , 703-710.	0.2	4
74	EFFECT OF ALMOND $\tilde{A}-$ PEACH HYBRID ROOTSTOCKS ON FRUIT QUALITY PARAMETERS AND YIELD CHARACTERISTICS OF PEACH CULTIVARS. Acta Horticulturae, 2012, , 599-603.	0.2	4
75	Genotyping-by-sequencing (GBS) for SNP-based linkage map construction for two Prunus rootstocks from a peach rootstock breeding program. Acta Horticulturae, 2021, , 113-120.	0.2	3
76	EFFECT OF THE EMBRYO GENOTYPE ON THE CHILLING REQUIREMENT FOR OVERCOMING PEACH SEED DORMANCY. Acta Horticulturae, 2012, , 195-201.	0.2	3
77	RESULTS ON THE PERFORMANCE OF SEVERAL PRUNUS ROOTSTOCKS FOR PEACH. Acta Horticulturae, 2015, , 147-152.	0.2	2
78	Development of a standardized methodology for phenotypical characterizations in apple. Acta Horticulturae, 2017, , 367-370.	0.2	2
79	FRUIT QUALITY ATTRIBUTES OF NEW PEACH AND NECTARINE VARIETIES UNDER SELECTION IN THE EBRO VALLEY CONDITIONS (SPAIN). Acta Horticulturae, 2009, , 493-500.	0.2	2
80	GENETIC CONTROL AND LOCATION OF QTLS INVOLVED IN ANTIOXIDANT CAPACITY AND FRUIT QUALITY TRAITS IN PEACH [PRUNUS PERSICA (L.) BATSCH]. Acta Horticulturae, 2012, , 129-134.	0.2	2
81	GENETIC ANALYSIS OF IRON CHLOROSIS TOLERANCE IN MYROBALAN PLUM X ALMOND-PEACH HYBRIDS. Acta Horticulturae, 2009, , 799-804.	0.2	1
82	Graft compatibility for new released <i>Prunus </i> rootstocks. Acta Horticulturae, 2018, , 175-180.	0.2	1
83	Genome-wide identification of single nucleotide polymorphisms (SNPs) and molecular characterization of <i>Prunus </i> rootstock germplasm using a genotyping-by-sequencing (GBS) approach. Acta Horticulturae, 2018, , 27-34.	0.2	1
84	Molecular and Evolutionary Characterization of Pollen S Determinant (SFB Alleles) in Four Diploid and Hexaploid Plum Species (Prunus spp.). Biochemical Genetics, 2021, 59, 42-61.	1.7	1
85	Performance of sixteen Prunus rootstocks budded with the nectarine cultivar â€~Big Top' and grown under root asphyxia conditions. Acta Horticulturae, 2021, , 237-242.	0.2	1
86	Phenotypic analysis of fruit quality traits and effect of climate in an apple (Malus \tilde{A} — domestica Borkh) germplasm bank of Arag \tilde{A}^3 n, Spain. Acta Horticulturae, 2021, , 109-114.	0.2	1
87	Genetic study of flower traits in a segregating peach-almond progeny. Acta Horticulturae, 2021, , 63-70.	0.2	1
88	Qualidade e suscetibilidade de pêssegos e nectarinas aos danos causados pelo frio. Colloquium Agrariae, 2019, 15, 22-39.	0.2	1
89	Genetic Diversity and Genome-Wide Association Study of Morphological and Quality Traits in Peach Using Two Spanish Peach Germplasm Collections. Frontiers in Plant Science, 2022, 13, 854770.	3.6	1
90	QTLs Identification for Iron Chlorosis in a Segregating Peach–Almond Progeny Through Double-Digest Sequence-Based Genotyping (SBG). Frontiers in Plant Science, 2022, 13, .	3.6	1

#	Article	IF	CITATIONS
91	POMOLOGICAL AND BIOCHEMICAL CHARACTERIZATION OF TWO TURKISH ALMOND CULTIVARS GROWN IN THE ANATOLIA REGION. Acta Horticulturae, 2014, , 239-242.	0.2	O
92	Evaluation of the tolerance of seven citrus rootstocks to Phytophthora gummosis under saline conditions. Acta Horticulturae, 2021, , 361-368.	0.2	0
93	Improvement of salt tolerance and resistance to Phytophthora gummosis in citrus rootstocks by controlled hybridization. Acta Horticulturae, 2021, , 351-360.	0.2	O
94	SCREENING PRUNUS ROOTSTOCKS FOR TOLERANCE TO IRON CHLOROSIS. Acta Horticulturae, 2004, , 799-802.	0.2	0
95	DIVERGÊNCIA E SELEÇÃO DE PESSEGUEIROS E NECTARINEIRAS BASEADA NA QUALIDADE DOS FRUTOS / DIVERGENCE AND SELECTION OF PEACHES AND NECTARINES BASED ON QUALITY OF FRUITS. Brazilian Journal of Development, 2020, 6, 82386-82406.	0.1	0