
Daniel Paredes-Sabja

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5351981/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Assembly of the exosporium layer in Clostridioides difficile spores. Current Opinion in Microbiology, 2022, 67, 102137.	5.1	8
2	Updating changes in human gut microbial communities associated with <i>Clostridioides difficile</i> infection. Gut Microbes, 2021, 13, 1966277.	9.8	5
3	Entry of spores into intestinal epithelial cells contributes to recurrence of Clostridioides difficile infection. Nature Communications, 2021, 12, 1140.	12.8	60
4	Visualization of fidaxomicin association with the exosporium layer of Clostridioides difficile spores. Anaerobe, 2021, 69, 102352.	2.1	7
5	Clostridioides difficile spores stimulate inflammatory cytokine responses and induce cytotoxicity in macrophages. Anaerobe, 2021, 70, 102381.	2.1	7
6	Landscapes and bacterial signatures of mucosa-associated intestinal microbiota in Chilean and Spanish patients with inflammatory bowel disease. Microbial Cell, 2021, 8, 223-238.	3.2	11
7	FastMLST: A Multi-core Tool for Multilocus Sequence Typing of Draft Genome Assemblies. Bioinformatics and Biology Insights, 2021, 15, 117793222110592.	2.0	14
8	Using a ligate intestinal loop mouse model to investigate Clostridioides difficile adherence to the intestinal mucosa in aged mice. PLoS ONE, 2021, 16, e0261081.	2.5	3
9	Nasal Immunization with the C-Terminal Domain of Bcla3 Induced Specific IgG Production and Attenuated Disease Symptoms in Mice Infected with Clostridioides difficile Spores. International Journal of Molecular Sciences, 2020, 21, 6696.	4.1	5
10	Characterization of Exosporium Layer Variability of Clostridioides difficile Spores in the Epidemically Relevant Strain R20291. Frontiers in Microbiology, 2020, 11, 1345.	3.5	14
11	Induction of a Specific Humoral Immune Response by Nasal Delivery of Bcla2ctd of Clostridioides difficile. International Journal of Molecular Sciences, 2020, 21, 1277.	4.1	9
12	Effect of antibiotic to induce Clostridioides difficile-susceptibility and infectious strain in a mouse model of Clostridioides difficile infection and recurrence. Anaerobe, 2020, 62, 102149.	2.1	6
13	Origin, genomic diversity and microevolution of the Clostridium difficile B1/NAP1/RT027/ST01 strain in Costa Rica, Chile, Honduras and Mexico. Microbial Genomics, 2020, 6, .	2.0	6
14	Comprehensive genome analyses of Sellimonas intestinalis, a potential biomarker of homeostasis gut recovery. Microbial Genomics, 2020, 6, .	2.0	28
15	The Clostridioides difficile Cysteine-Rich Exosporium Morphogenetic Protein, CdeC, Exhibits Self-Assembly Properties That Lead to Organized Inclusion Bodies in Escherichia coli. MSphere, 2020, 5,	2.9	8
16	New insights for vaccine development against Clostridium difficile infections. Anaerobe, 2019, 58, 73-79.	2.1	12
17	Sporulation and Germination in Clostridial Pathogens. Microbiology Spectrum, 2019, 7, .	3.0	60
18	<i>ci>cfr</i> (B), <i>cfr</i> (C), and a New <i>cfr</i> -Like Gene, <i>cfr</i> (E), in Clostridium difficile	3.2	37

18 Strains Recovered across Latin America. Antimicrobial Agents and Chemotherapy, 2019, 64, . 3.2

#	Article	IF	CITATIONS
19	Clostridium difficile toxins induce VEGF-A and vascular permeability to promote disease pathogenesis. Nature Microbiology, 2019, 4, 269-279.	13.3	62
20	<i>Clostridioides (Clostridium) difficile</i> infection: current and alternative therapeutic strategies. Future Microbiology, 2018, 13, 469-482.	2.0	8
21	Identification of <i>Clostridium difficile</i> Immunoreactive Spore Proteins of the Epidemic Strain R20291. Proteomics - Clinical Applications, 2018, 12, e1700182.	1.6	16
22	Inactivation model and risk-analysis design for apple juice processing by high-pressure CO2. Journal of Food Science and Technology, 2018, 55, 258-264.	2.8	4
23	Indomethacin increases severity of <i>Clostridium difficile</i> infection in mouse model. Future Microbiology, 2018, 13, 1271-1281.	2.0	16
24	Identification of Escherichia coli strains for the heterologous overexpression of soluble Clostridium difficile exosporium proteins. Journal of Microbiological Methods, 2018, 154, 46-51.	1.6	2
25	Subtyping of Clostridium difficile PCR ribotypes 591, 106 and 002, the dominant strain types circulating in Medellin, Colombia. PLoS ONE, 2018, 13, e0195694.	2.5	10
26	Clostridium difficile exosporium cysteine-rich proteins are essential for the morphogenesis of the exosporium layer, spore resistance, and affect C. difficile pathogenesis. PLoS Pathogens, 2018, 14, e1007199.	4.7	61
27	Updates on Clostridium difficile spore biology. Anaerobe, 2017, 45, 3-9.	2.1	38
28	Survival of Clostridium difficile spores at low water activity. Food Microbiology, 2017, 65, 274-278.	4.2	11
29	Characterization of Chicken IgY Specific to Clostridium difficile R20291 Spores and the Effect of Oral Administration in Mouse Models of Initiation and Recurrent Disease. Frontiers in Cellular and Infection Microbiology, 2017, 7, 365.	3.9	39
30	Lauric Acid Is an Inhibitor of Clostridium difficile Growth in Vitro and Reduces Inflammation in a Mouse Infection Model. Frontiers in Microbiology, 2017, 8, 2635.	3.5	61
31	Molecular, microbiological and clinical characterization of Clostridium difficile isolates from tertiary care hospitals in Colombia. PLoS ONE, 2017, 12, e0184689.	2.5	15
32	Effect of microalgae on intestinal inflammation triggered by soybean meal and bacterial infection in zebrafish. PLoS ONE, 2017, 12, e0187696.	2.5	38
33	Characterization of the Adherence of Clostridium difficile Spores: The Integrity of the Outermost Layer Affects Adherence Properties of Spores of the Epidemic Strain R20291 to Components of the Intestinal Mucosa. Frontiers in Cellular and Infection Microbiology, 2016, 6, 99.	3.9	62
34	Genome Sequence of Clostridium paraputrificum 373-A1 Isolated in Chile from a Patient Infected with Clostridium difficile. Genome Announcements, 2016, 4, .	0.8	1
35	The NarE protein of <i>Neisseria gonorrhoeae</i> catalyzes ADP-ribosylation of several ADP-ribose acceptors despite an N-terminal deletion. FEMS Microbiology Letters, 2016, 363, fnw181.	1.8	5
36	Ultrastructure Variability of the Exosporium Layer of Clostridium difficile Spores from Sporulating Cultures and Biofilms. Applied and Environmental Microbiology, 2016, 82, 5892-5898.	3.1	46

#	Article	IF	CITATIONS
37	Lose to win: marT pseudogenization in Salmonella enterica serovar Typhi contributed to the surV -dependent survival to H 2 O 2 , and inside human macrophage-like cells. Infection, Genetics and Evolution, 2016, 45, 111-121.	2.3	18
38	Acyldepsipeptide antibiotics as a potential therapeutic agent against <i>Clostridium difficile</i> recurrent infections. Future Microbiology, 2016, 11, 1179-1189.	2.0	14
39	Ultrastructural Variability of the Exosporium Layer of Clostridium difficile Spores. Applied and Environmental Microbiology, 2016, 82, 2202-2209.	3.1	51
40	Characterization of germinants and their receptors for spores of non-food-borne Clostridium perfringens strain F4969. Microbiology (United Kingdom), 2016, 162, 1972-1983.	1.8	8
41	Participation of S. Typhimurium cysJIH Operon in the H2S-mediated Ciprofloxacin Resistance in Presence of Sulfate as Sulfur Source. Antibiotics, 2015, 4, 321-328.	3.7	4
42	Updates on the sporulation process in Clostridium species. Research in Microbiology, 2015, 166, 225-235.	2.1	41
43	The inhibitory effects of sorbate and benzoate against Clostridium perfringens type A isolates. Food Microbiology, 2015, 48, 89-98.	4.2	21
44	CysB-dependent upregulation of the Salmonella Typhimurium cysJIH operon in response to antimicrobial compounds that induce oxidative stress. Biochemical and Biophysical Research Communications, 2015, 458, 46-51.	2.1	25
45	Analysis of Vibrio vulnificus Infection Risk When Consuming Depurated Raw Oysters. Journal of Food Protection, 2015, 78, 1113-1118.	1.7	2
46	Location and stoichiometry of the protease CspB and the cortex-lytic enzyme SleC in Clostridium perfringens spores. Food Microbiology, 2015, 50, 83-87.	4.2	21
47	Protein composition of the outermost exosporium-like layer of Clostridium difficile 630 spores. Journal of Proteomics, 2015, 123, 1-13.	2.4	73
48	Outcome of relapsing Clostridium difficile infections do not correlate with virulence-, spore- and vegetative cell-associated phenotypes. Anaerobe, 2015, 36, 30-38.	2.1	10
49	<i>Clostridium difficile</i> recurrent infection: possible implication of TA systems. Future Microbiology, 2015, 10, 1649-1657.	2.0	14
50	Motility modulation by the small non-coding RNA SroC in <i>Salmonella</i> Typhimurium. FEMS Microbiology Letters, 2015, 362, fnv135.	1.8	16
51	High hydrostatic pressure-induced inactivation of bacterial spores. Critical Reviews in Microbiology, 2015, 41, 18-26.	6.1	36
52	Recent advances in germination of Clostridium spores. Research in Microbiology, 2015, 166, 236-243.	2.1	35
53	Survival of Clostridium difficile spores at low temperatures. Food Microbiology, 2015, 46, 218-221.	4.2	28
54	New amino acid germinants for spores of the enterotoxigenic Clostridium perfringens type A isolates. Food Microbiology, 2014, 44, 24-33.	4.2	17

#	Article	IF	CITATIONS
55	<i>Clostridium difficile</i> spores: a major threat to the hospital environment. Future Microbiology, 2014, 9, 475-486.	2.0	49
56	Characterization of the collagen-like exosporium protein, BclA1, of Clostridium difficile spores. Anaerobe, 2014, 25, 18-30.	2.1	72
57	Clostridium difficile spore biology: sporulation, germination, and spore structural proteins. Trends in Microbiology, 2014, 22, 406-416.	7.7	346
58	Proteases and sonication specifically remove the exosporium layer of spores of Clostridium difficile strain 630. Journal of Microbiological Methods, 2013, 93, 25-31.	1.6	49
59	Prospective comparison of a commercial multiplex real-time polymerase chain reaction and an enzyme immunoassay with toxigenic culture in the diagnosis of Clostridium difficile–associated infections. Diagnostic Microbiology and Infectious Disease, 2013, 75, 361-365.	1.8	19
60	Diagnostic accuracy of a multiplex real-time PCR to predict Clostridium difficile ribotype 027. Anaerobe, 2013, 22, 115-117.	2.1	2
61	The Clostridium difficile Exosporium Cysteine (CdeC)-Rich Protein Is Required for Exosporium Morphogenesis and Coat Assembly. Journal of Bacteriology, 2013, 195, 3863-3875.	2.2	86
62	Unique Regulatory Mechanism of Sporulation and Enterotoxin Production in Clostridium perfringens. Journal of Bacteriology, 2013, 195, 2931-2936.	2.2	29
63	The Clostridium perfringens Germinant Receptor Protein GerKC Is Located in the Spore Inner Membrane and Is Crucial for Spore Germination. Journal of Bacteriology, 2013, 195, 5084-5091.	2.2	42
64	Atypical presentation of pseudomembranous colitis localized in adenomatous polyps. World Journal of Gastroenterology, 2013, 19, 316.	3.3	1
65	Adherence of Clostridium difficile spores to Caco-2 cells in culture. Journal of Medical Microbiology, 2012, 61, 1208-1218.	1.8	73
66	Molecular basis of early stages of <i>Clostridium difficile</i> infection: germination and colonization. Future Microbiology, 2012, 7, 933-943.	2.0	35
67	Hurdle Approach to Increase the Microbial Inactivation by High Pressure Processing: Effect of Essential Oils. Food Engineering Reviews, 2012, 4, 141-148.	5.9	39
68	EpidemicClostridium difficileRibotype 027 in Chile. Emerging Infectious Diseases, 2012, 18, 1370-2.	4.3	20
69	Inhibitory Effects of Nisin Againstâ€, <i>Clostridium perfringens</i> â€,Food Poisoning and Nonfoodâ€Borne Isolates. Journal of Food Science, 2012, 77, M51-6.	3.1	51
70	Interactions between Clostridium perfringens spores and Raw 264.7 macrophages. Anaerobe, 2012, 18, 148-156.	2.1	22
71	Clostridium difficile Spore-Macrophage Interactions: Spore Survival. PLoS ONE, 2012, 7, e43635.	2.5	59
72	Clostridium perfringens tpeL is expressed during sporulation. Microbial Pathogenesis, 2011, 51, 384-388.	2.9	24

#	Article	IF	CITATIONS
73	Germination of spores of Bacillales and Clostridiales species: mechanisms and proteins involved. Trends in Microbiology, 2011, 19, 85-94.	7.7	319
74	Germination response of spores of the pathogenic bacterium Clostridium perfringens and Clostridium difficile to cultured human epithelial cells. Anaerobe, 2011, 17, 78-84.	2.1	28
75	Host serum factor triggers germination of Clostridium perfringens spores lacking the cortex hydrolysis machinery. Journal of Medical Microbiology, 2011, 60, 1734-1741.	1.8	8
76	MODELING OF THE GERMINATION OF SPORES FROM <i>CLOSTRIDIUM PERFRINGENS</i> FOOD POISONING ISOLATES. Journal of Food Process Engineering, 2010, 33, 150-167.	2.9	3
77	Effect of the cortex-lytic enzyme SleC from non-food-borne Clostridium perfringens on the germination properties of SleC-lacking spores of a food poisoning isolate. Canadian Journal of Microbiology, 2010, 56, 952-958.	1.7	7
78	Further Characterization of Clostridium perfringens Small Acid Soluble Protein-4 (Ssp4) Properties and Expression. PLoS ONE, 2009, 4, e6249.	2.5	36
79	The protease CspB is essential for initiation of cortex hydrolysis and dipicolinic acid (DPA) release during germination of spores of Clostridium perfringens type A food poisoning isolates. Microbiology (United Kingdom), 2009, 155, 3464-3472.	1.8	64
80	Inorganic Phosphate and Sodium Ions Are Cogerminants for Spores of <i>Clostridium perfringens</i> Type A Food Poisoning-Related Isolates. Applied and Environmental Microbiology, 2009, 75, 6299-6305.	3.1	36
81	Role of GerKB in Germination and Outgrowth of <i>Clostridium perfringens</i> Spores. Applied and Environmental Microbiology, 2009, 75, 3813-3817.	3.1	43
82	GerO, a Putative Na ⁺ /H ⁺ -K ⁺ Antiporter, Is Essential for Normal Germination of Spores of the Pathogenic Bacterium <i>Clostridium perfringens</i> . Journal of Bacteriology, 2009, 191, 3822-3831.	2.2	24
83	SleC Is Essential for Cortex Peptidoglycan Hydrolysis during Germination of Spores of the Pathogenic Bacterium <i>Clostridium perfringens</i> . Journal of Bacteriology, 2009, 191, 2711-2720.	2.2	88
84	Strategy to inactivate Clostridium perfringens spores in meat products. Food Microbiology, 2009, 26, 272-277.	4.2	70
85	<i>Clostridium perfringens</i> sporulation and its relevance to pathogenesis. Future Microbiology, 2009, 4, 519-525.	2.0	26
86	Inhibitory effects of polyphosphates on Clostridium perfringens growth, sporulation and spore outgrowth. Food Microbiology, 2008, 25, 802-808.	4.2	38
87	Role of small, acid-soluble spore proteins in the resistance of Clostridium perfringens spores to chemicals. International Journal of Food Microbiology, 2008, 122, 333-335.	4.7	40
88	Roles of DacB and Spm Proteins in <i>Clostridium perfringens</i> Spore Resistance to Moist Heat, Chemicals, and UV Radiation. Applied and Environmental Microbiology, 2008, 74, 3730-3738.	3.1	49
89	Characterization of <i>Clostridium perfringens</i> Spores That Lack SpoVA Proteins and Dipicolinic Acid. Journal of Bacteriology, 2008, 190, 4648-4659.	2.2	77
90	<i>Clostridium perfringens</i> Spore Germination: Characterization of Germinants and Their Receptors. Journal of Bacteriology, 2008, 190, 1190-1201.	2.2	143

6

IF CITATIONS

91	Sporulation and	Germination in	Clostridial Pathogens. , 0, , 903-	926.
----	-----------------	----------------	------------------------------------	------