Thomas Greb

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5351827/publications.pdf Version: 2024-02-01

THOMAS COFR

#	Article	IF	CITATIONS
1	Molecular analysis of the LATERAL SUPPRESSOR gene in Arabidopsis reveals a conserved control mechanism for axillary meristem formation. Genes and Development, 2003, 17, 1175-1187.	5.9	446
2	A PHD-Polycomb Repressive Complex 2 triggers the epigenetic silencing of <i>FLC</i> during vernalization. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 16831-16836.	7.1	438
3	Strigolactone signaling is required for auxin-dependent stimulation of secondary growth in plants. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 20242-20247.	7.1	348
4	Strigolactones Suppress Adventitious Rooting in Arabidopsis and Pea Â. Plant Physiology, 2012, 158, 1976-1987.	4.8	286
5	The PHD Finger Protein VRN5 Functions in the Epigenetic Silencing of Arabidopsis FLC. Current Biology, 2007, 17, 73-78.	3.9	251
6	Interplay of miR164, <i>CUPâ€5HAPED COTYLEDON</i> genes and <i>LATERAL SUPPRESSOR</i> controls axillary meristem formation in <i>Arabidopsis thaliana</i> . Plant Journal, 2008, 55, 65-76.	5.7	246
7	<i>WOX4</i> Imparts Auxin Responsiveness to Cambium Cells in <i>Arabidopsis</i> Â Â Â. Plant Cell, 2011, 23, 3247-3259.	6.6	230
8	Analysis of secondary growth in the Arabidopsis shoot reveals a positive role of jasmonate signalling in cambium formation. Plant Journal, 2010, 63, 811-822.	5.7	198
9	Mobile PEAR transcription factors integrate positional cues to prime cambial growth. Nature, 2019, 565, 490-494.	27.8	195
10	Tackling Drought Stress: RECEPTOR-LIKE KINASES Present New Approaches. Plant Cell, 2012, 24, 2262-2278.	6.6	155
11	Mapping the subcellular mechanical properties of live cells in tissues with fluorescence emission–Brillouin imaging. Science Signaling, 2016, 9, rs5.	3.6	153
12	WUSCHEL acts as an auxin response rheostat to maintain apical stem cells in Arabidopsis. Nature Communications, 2019, 10, 5093.	12.8	143
13	Characterization of Transcriptome Remodeling during Cambium Formation Identifies MOL1 and RUL1 As Opposing Regulators of Secondary Growth. PLoS Genetics, 2011, 7, e1001312.	3.5	133
14	Plant Stem Cells. Current Biology, 2016, 26, R816-R821.	3.9	129
15	Genomeâ€wide bindingâ€site analysis of REVOLUTA reveals a link between leaf patterning and lightâ€mediated growth responses. Plant Journal, 2012, 72, 31-42.	5.7	120
16	Strigolactone- and Karrikin-Independent SMXL Proteins Are Central Regulators of Phloem Formation. Current Biology, 2017, 27, 1241-1247.	3.9	117
17	Spatial specificity of auxin responses coordinates wood formation. Nature Communications, 2018, 9, 875.	12.8	110
18	From thin to thick: major transitions during stem development. Trends in Plant Science, 2012, 17, 113-121.	8.8	79

THOMAS GREB

#	Article	IF	CITATIONS
19	Bifacial cambium stem cells generate xylem and phloem during radial plant growth. Development (Cambridge), 2019, 146, .	2.5	77
20	(Pro)cambium formation and proliferation: two sides of the same coin?. Current Opinion in Plant Biology, 2015, 23, 54-60.	7.1	75
21	A Comprehensive Toolkit for Inducible, Cell Type-Specific Gene Expression in Arabidopsis. Plant Physiology, 2018, 178, 40-53.	4.8	73
22	BIL1-mediated MP phosphorylation integrates PXY and cytokinin signalling in secondary growth. Nature Plants, 2018, 4, 605-614.	9.3	71
23	Secondary growth as a determinant of plant shape and form. Seminars in Cell and Developmental Biology, 2018, 79, 58-67.	5.0	69
24	<i><scp>MOL</scp>1</i> is required for cambium homeostasis in Arabidopsis. Plant Journal, 2016, 86, 210-220.	5.7	55
25	Translational control of phloem development by RNA G-quadruplex–JULGI determines plant sink strength. Nature Plants, 2018, 4, 376-390.	9.3	50
26	Tissue-specific transcriptome profiling of the Arabidopsis inflorescence stem reveals local cellular signatures. Plant Cell, 2021, 33, 200-223.	6.6	48
27	Going with the wind – Adaptive dynamics of plant secondary meristems. Mechanisms of Development, 2013, 130, 34-44.	1.7	37
28	Strigolactone versus gibberellin signaling: reemerging concepts?. Planta, 2016, 243, 1339-1350.	3.2	32
29	The Phloem as a Mediator of Plant Growth Plasticity. Current Biology, 2019, 29, R173-R181.	3.9	32
30	A 3D gene expression atlas of the floral meristem based on spatial reconstruction of single nucleus RNA sequencing data. Nature Communications, 2022, 13, .	12.8	31
31	Cell polarity in plants: the Yin and Yang of cellular functions. Current Opinion in Plant Biology, 2017, 35, 105-110.	7.1	23
32	Long―and shortâ€distance signaling in the regulation of lateral plant growth. Physiologia Plantarum, 2014, 151, 134-141.	5.2	21
33	Radial plant growth. Current Biology, 2017, 27, R878-R882.	3.9	21
34	Control of cambium initiation and activity in Arabidopsis by the transcriptional regulator AHL15. Current Biology, 2022, 32, 1764-1775.e3.	3.9	21
35	<i>SUPPRESSOR OF MAX2 1‣IKE 5</i> promotes secondary phloem formation during radial stem growth. Plant Journal, 2020, 102, 903-915.	5.7	19
36	Epigenetic Regulation in the Control of Flowering. Cold Spring Harbor Symposia on Quantitative Biology, 2004, 69, 457-464.	1.1	18

THOMAS GREB

#	Article	IF	CITATIONS
37	How to organize bidirectional tissue production?. Current Opinion in Plant Biology, 2019, 51, 15-21.	7.1	15
38	Bifacial stem cell niches in fish and plants. Current Opinion in Genetics and Development, 2017, 45, 28-33.	3.3	14
39	Isolation and characterization of the Spindly homologue from tomato. Journal of Experimental Botany, 2002, 53, 1829-1830.	4.8	9
40	Strigo-D2—a bio-sensor for monitoring spatio-temporal strigolactone signaling patterns in intact plants. Plant Physiology, 2022, 188, 97-110.	4.8	7
41	Cell Fate Decisions Within the Vascular Cambium–Initiating Wood and Bast Formation. Frontiers in Plant Science, 2022, 13, 864422.	3.6	6
42	Plant Development: How Phloem Patterning Occurs. Current Biology, 2020, 30, R217-R219.	3.9	4
43	Correction for Agusti et al., Strigolactone signaling is required for auxin-dependent stimulation of secondary growth in plants. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 14277-14277.	7.1	3
44	Inducible, Cell Type-Specific Expression in Arabidopsis thaliana Through LhGR-Mediated Trans -Activation. Journal of Visualized Experiments, 2019, , .	0.3	1
45	Genetic space of radial plant growth. Nature Plants, 2019, 5, 1032-1032.	9.3	0