Sergey A Mintairov

List of Publications by Citations

Source: https://exaly.com/author-pdf/5351819/sergey-a-mintairov-publications-by-citations.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

176
papers1,016
citations16
h-index24
g-index193
ext. papers1,177
ext. citations1.1
avg, IF4.09
L-index

#	Paper	IF	Citations
176	AlGaAs/GaAs photovoltaic cells with an array of InGaAs QDs. Semiconductors, 2009, 43, 514-518	0.7	125
175	Highly efficient injection microdisk lasers based on quantum well-dots. <i>Optics Letters</i> , 2018 , 43, 4554-45	5 5 7	39
174	Hybrid InGaAs quantum well-dots nanostructures for light-emitting and photo-voltaic applications. <i>Nanotechnology</i> , 2015 , 26, 385202	3.4	34
173	Numerical modelling of GaInP solar cells with AlInP and AlGaAs windows. <i>Thin Solid Films</i> , 2008 , 516, 6739-6743	2.2	34
172	Increasing the quantum efficiency of InAs/GaAs QD arrays for solar cells grown by MOVPE without using strain-balance technology. <i>Progress in Photovoltaics: Research and Applications</i> , 2016 , 24, 1261-12	7 ^{6.8}	34
171	Photovoltaic laser-power converter based on AlGaAs/GaAs heterostructures. <i>Semiconductors</i> , 2016 , 50, 1220-1224	0.7	32
170	GaAs quantum well-dots solar cells with spectral response extended to 1100hm. <i>Electronics Letters</i> , 2015 , 51, 1602-1604	1.1	29
169	Light Emitting Devices Based on Quantum Well-Dots. Applied Sciences (Switzerland), 2020, 10, 1038	2.6	20
168	The Segmental Approximation in Multijunction Solar Cells. <i>IEEE Journal of Photovoltaics</i> , 2015 , 5, 1229-7	13 3 6	19
167	High-efficiency dual-junction GaInP/GaAs tandem solar cells obtained by the method of MOCVD. <i>Semiconductors</i> , 2007 , 41, 727-731	0.7	19
166	InGaAs metamorphic laser (1064\(\text{Inm}\)) power converters with over 40% efficiency. <i>Electronics Letters</i> , 2017 , 53, 173-175	1.1	18
165	Transverse single-mode edge-emitting lasers based on coupled waveguides. <i>Optics Letters</i> , 2015 , 40, 2150-2	3	18
164	Lasing of whispering-gallery modes in asymmetric waveguide GaInP micro-disks with InP quantum dots. <i>Physics Letters, Section A: General, Atomic and Solid State Physics</i> , 2009 , 373, 1185-1188	2.3	18
163	Germanium subcells for multijunction GaInP/GaInAs/Ge solar cells. Semiconductors, 2010, 44, 1520-1528	30.7	18
162	AlGaAs/GaAs photovoltaic converters for high power narrowband radiation 2014,		16
161	Direct modulation characteristics of microdisk lasers with InGaAs/GaAs quantum well-dots. <i>Photonics Research</i> , 2019 , 7, 664	6	16
160	Lasing of whispering-gallery modes in GaInP waveguide micro-discs and rings with InP quantum dots. <i>Physica Status Solidi C: Current Topics in Solid State Physics</i> , 2011 , 8, 325-327		15

(2010-2016)

159	Galh intermixing, intrinsic doping, and Wigner localization in the emission spectra of self-organized InP/GaInP quantum dots. <i>Journal Physics D: Applied Physics</i> , 2016 , 49, 475301	3	15	
158	Optimization of structural and growth parameters of metamorphic InGaAs photovoltaic converters grown by MOCVD. <i>Semiconductors</i> , 2017 , 51, 93-99	0.7	14	
157	Study of minority carrier diffusion lengths in photoactive layers of multijunction solar cells. <i>Semiconductors</i> , 2010 , 44, 1084-1089	0.7	14	
156	High speed data transmission using directly modulated microdisk lasers based on InGaAs/GaAs quantum well-dots. <i>Optics Letters</i> , 2019 , 44, 5442-5445	3	14	
155	Simulation of the ohmic loss in photovoltaic laser-power converters for wavelengths of 809 and 1064 nm. <i>Semiconductors</i> , 2016 , 50, 125-131	0.7	13	
154	Characterization of the Manufacturing Processes to Grow Triple-Junction Solar Cells. <i>International Journal of Photoenergy</i> , 2014 , 2014, 1-10	2.1	13	
153	Control of Wigner localization and electron cavity effects in near-field emission spectra of In(Ga)P/GaInP quantum-dot structures. <i>Physical Review B</i> , 2018 , 97,	3.3	13	
152	InGaAs quantum well-dots based GaAs subcell with enhanced photocurrent for multijunction GaInP/GaAs/Ge solar cells. <i>Semiconductor Science and Technology</i> , 2017 , 32, 015006	1.8	12	
151	AlGaAs/GaAs Photovoltaic Cells with InGaAs Quantum Dots. <i>Advances in Science and Technology</i> , 2010 , 74, 231-236	0.1	12	
150	Interface properties of GaInP/Ge hetero-structure sub-cells of multi-junction solar cells. <i>Journal Physics D: Applied Physics</i> , 2012 , 45, 495305	3	11	
149	Photoelectric determination of the series resistance of multijunction solar cells. <i>Semiconductors</i> , 2012 , 46, 1051-1058	0.7	11	
148	Optimization of photoelectric parameters of InGaAs metamorphic laser (\(\begin{aligned} \begin{aligned} \lefta \lefta \lefta \righta	6.4	11	
147	Evaluation of energy-to-data ratio of quantum-dot microdisk lasers under direct modulation. <i>Journal of Applied Physics</i> , 2019 , 126, 063107	2.5	10	
146	Estimation of the potential efficiency of a multijunction solar cell at a limit balance of photogenerated currents. <i>Semiconductors</i> , 2015 , 49, 668-673	0.7	10	
145	Determination of the technological growth parameters in the InAs-GaAs system for the MOCVD synthesis of Multimodal InAs QDs. <i>Semiconductors</i> , 2015 , 49, 1111-1118	0.7	10	
144	Heterostructures of metamorphic GalnAs photovoltaic converters fabricated by MOCVD on GaAs substrates. <i>Semiconductors</i> , 2016 , 50, 517-522	0.7	10	
143	Effect of the bimodality of a QD array on the optical properties and threshold characteristics of QD lasers. <i>Semiconductors</i> , 2015 , 49, 1090-1094	0.7	10	
142	Multijunction GaInP/GaInAs/Ge solar cells with Bragg reflectors. <i>Semiconductors</i> , 2010 , 44, 1600-1605	0.7	10	

141	Band structure at heterojunction interfaces of GaInP solar cells. <i>Solar Energy Materials and Solar Cells</i> , 2010 , 94, 1953-1958	6.4	10
140	Current flow mechanism in GaAs solar cells with GaInAs quantum dots 2016 ,		9
139	Spectral-splitting concentrator photovoltaic modules based on AlGaAs/GaAs/GaSb and GaInP/InGaAs(P) solar cells. <i>Technical Physics</i> , 2013 , 58, 1034-1038	0.5	9
138	Properties of interfaces in GaInP solar cells. <i>Semiconductors</i> , 2009 , 43, 1363-1368	0.7	9
137	Optical mode engineering and high power density per facet length (>8.4 kW/cm) in tilted wave laser diodes 2016 ,		8
136	Thermal and resistive losses in InGaAs metamorphic laser (1 1064 nm) power converters with over 50% efficiency 2019 ,		8
135	Single-Mode Emission From 4 B -th Microdisk Lasers With Dense Array of InGaAs Quantum Dots. Journal of Lightwave Technology, 2015 , 33, 171-175	4	8
134	Wavelength-stabilized tilted wave lasers with a narrow vertical beam divergence. <i>Semiconductor Science and Technology</i> , 2008 , 23, 075043	1.8	8
133	Impact of Self-Heating and Elevated Temperature on Performance of Quantum Dot Microdisk Lasers. <i>IEEE Journal of Quantum Electronics</i> , 2020 , 56, 1-8	2	8
132	InGaAs metamorphic laser (월1064 nm) power converters with over 44% efficiency 2018 ,		8
131	III-phosphides heterojunction solar cell interface properties from admittance spectroscopy. <i>Journal Physics D: Applied Physics</i> , 2009 , 42, 165307	3	7
130	Bimodality in Arrays of In0.4Ga0.6As Hybrid Quantum-Confined Heterostructures Grown on GaAs Substrates. <i>Semiconductors</i> , 2018 , 52, 53-58	0.7	6
129	Gradual Evolution From Quantum-Well-Like to Quantum-Dot-Like Characteristics in InGaAs/GaAs Nanostructures. <i>Physica Status Solidi (B): Basic Research</i> , 2018 , 255, 1800123	1.3	6
128	Local triboelectrification of an n-GaAs surface using the tip of an atomic-force microscope. <i>Semiconductors</i> , 2013 , 47, 1170-1173	0.7	6
127	New method for interface characterization in heterojunction solar cells based on diffusion capacitance measurements. <i>Thin Solid Films</i> , 2008 , 516, 6786-6790	2.2	6
126	Temperature Tweaking of the Output Photovoltaic Parameters of Laser Power Converters. <i>IEEE Electron Device Letters</i> , 2020 , 41, 1324-1327	4.4	6
125	Counter-photo-electromotive force at heterointerfaces in MJ SC: Study by spectral method 2016 ,		6
124	Comparison of wet chemical treatment and Ar-ion sputtering for GaInP2(100) surface preparation. <i>Materials Science in Semiconductor Processing</i> , 2016 , 51, 81-88	4.3	6

123	Specific Features of the Current Voltage Characteristic of Microdisk Lasers Based on InGaAs/GaAs Quantum Well-Dots. <i>Technical Physics Letters</i> , 2019 , 45, 994-996	0.7	6
122	Improved performance of InGaAs/GaAs microdisk lasers epi-side down bonded onto a silicon board. <i>Optics Letters</i> , 2021 , 46, 3853-3856	3	6
121	Optimization of structural and growth parameters of metamorphic InGaAs/GaAs photoconverters grown by MOCVD. <i>Journal of Physics: Conference Series</i> , 2016 , 741, 012086	0.3	5
120	Dethermalization of carriers in GaAs solar cells with quantum objects. <i>Applied Physics Express</i> , 2019 , 12, 035005	2.4	4
119	Passive cavity laser and tilted wave laser for Bessel-like beam coherently coupled bars and stacks 2015 ,		4
118	High intensity low temperature (HILT) performance of space concentrator GaInP/GaInAs/Ge MJ SCs 2014 ,		4
117	Characterization of GaInP/Ge heterostructure solar cells by capacitance measurements at forward bias under illumination. <i>Energy Procedia</i> , 2011 , 3, 76-83	2.3	4
116	Edge-emitting InGaAs/GaAs laser with high temperature stability of wavelength and threshold current. <i>Semiconductor Science and Technology</i> , 2010 , 25, 045003	1.8	4
115	Material gain of InGaAs/GaAs quantum well-dots. Semiconductor Science and Technology, 2021, 36, 015	0088	4
114	The Effect of Self-Heating on the Modulation Characteristics of a Microdisk Laser. <i>Technical Physics Letters</i> , 2020 , 46, 515-519	0.7	4
113	On current spreading in solar cells: a two-parameter tube model. Semiconductors, 2016, 50, 970-975	0.7	4
112	Edge-emitting lasers based on transitionally dimensional InGaAs/GaAs active region. <i>Journal of Physics: Conference Series</i> , 2018 , 1135, 012071	0.3	4
111	Photoconverter heating by incident radiation: Overheat temperature and IV-curve correction 2018,		4
110	Recombination in GaAs p il Structures with InGaAs Quantum-Confined Objects: Modeling and Regularities. <i>Semiconductors</i> , 2018 , 52, 1244-1248	0.7	4
109	Energy Consumption for High-Frequency Switching of a Quantum-Dot Microdisk Laser. <i>Technical Physics Letters</i> , 2019 , 45, 847-849	0.7	3
108	Experimental and Theoretical Examination of the Photosensitivity Spectra of Structures with In0.4Ga0.6As Quantum Well-Dots of the Optical Range (900🛮 050 nm). <i>Technical Physics Letters</i> , 2020 , 46, 203-206	0.7	3
107	Near-field scanning magneto-optical spectroscopy of Wigner molecules 2016,		3
106	InGaAs/GaAs hybrid quantum well-dot nanostructures: Impact of substrate orientation and recombination mechanisms. <i>Journal of Physics: Conference Series</i> , 2017 , 917, 032001	0.3	3

105	Current mismatch violation in concentrator multijunction solar cells 2017,		3
104	Heterointerfaces in MJ SC: IV curves and their peculiarities 2015 ,		3
103	Improvement of Radiation Resistance of Multijunction GaInP/Ga(In)As/Ge Solar Cells with Application of Bragg Reflectors. <i>Advances in Science and Technology</i> , 2010 , 74, 225-230	0.1	3
102	Multijunction solar cell with intermediate IR reflector 2012 ,		3
101	Electronic states in GaAs photoconverters with InGaAs quantum well-dots. <i>Applied Physics Express</i> , 2020 , 13, 015009	2.4	3
100	Anomalies in Photovoltaic Characteristics of Multijunction Solar Cells at Ultrahigh Solar Light Concentrations. <i>Technical Physics Letters</i> , 2019 , 45, 1100-1102	0.7	3
99	Heating of photovoltaic converter by laser beam: overheating temperature. <i>Journal of Physics: Conference Series</i> , 2018 , 1135, 012070	0.3	3
98	Light-emitting and photovoltaic devices based on quantum well-dots hybrid nanostructures 2017,		2
97	Ultimate Lasing Temperature of Microdisk Lasers. Semiconductors, 2020, 54, 677-681	0.7	2
96	Optical properties of hybrid quantum-confined structures with high absorbance. <i>Semiconductors</i> , 2016 , 50, 1180-1185	0.7	2
95	Bragg reflectors for measuring optical parameters of layers of metamorphic InAlGaAs/GaAs heterostructures. <i>Optics Express</i> , 2018 , 26, A832-A843	3.3	2
94	In0.8Ga0.2As Quantum Dots for GaAs Solar Cells: Metal-Organic Vapor-Phase Epitaxy Growth Peculiarities and Properties. <i>Semiconductors</i> , 2018 , 52, 870-876	0.7	2
93	Module of Laser-Radiation (ଢ 1064 nm) Photovoltaic Converters. <i>Semiconductors</i> , 2019 , 53, 1110-1113	0.7	2
92	Time-Resolved Photoluminescence of InGaAs Nanostructures Different in Quantum Dimensionality. <i>Semiconductors</i> , 2019 , 53, 1489-1495	0.7	2
91	Subtractive method for obtaining the dark current-voltage characteristic and its types for the residual (nongenerating) part of a multi-junction solar cell. <i>Semiconductors</i> , 2014 , 48, 653-658	0.7	2
90	Optical properties of hybrid quantum-welldots nanostructures grown by MOCVD. <i>Semiconductors</i> , 2017 , 51, 357-362	0.7	2
89	Quantum Hall regime in emission spectra of single self-organized InP/GaInP quantum dots. <i>Journal of Physics: Conference Series</i> , 2010 , 245, 012041	0.3	2
88	InGaAs metamorphic laser power converters with distributed Bragg reflector for wavelength range 🗄 1 🖟 1 🖟 m 2020 ,		2

(2012-2021)

87	Piezo-electric fields and state-filling photo-luminescence in natural InP/GaInP2 Wigner molecule structures. <i>Applied Physics Letters</i> , 2021 , 118, 121101	3.4	2	
86	Metamorphic InGaAs photo-converters on GaAs substrates. <i>Journal of Physics: Conference Series</i> , 2016 , 690, 012032	0.3	2	
85	Investigation of optical properties of In(Ga)As/GaAs mesa structures with active region based on quantum wells, quantum dots, and quantum well-dots. <i>Journal of Physics: Conference Series</i> , 2019 , 1410, 012157	0.3	2	
84	Optical and electrical properties of superlattice and photonic metamorphic structures for high-performance solar cells 2018 ,		2	
83	The investigation of InGaAs quantum dot growth peculiarities for GaAs intermediate band solar cells. <i>Journal of Physics: Conference Series</i> , 2018 , 1038, 012110	0.3	2	
82	InGaAs/GaAs receiver for infrared (월1064 nm) laser power conversion 2018 ,		2	
81	Reduction of Internal Loss and Thermal Resistance in Diode Lasers with Coupled Waveguides. <i>Semiconductors</i> , 2018 , 52, 1462-1467	0.7	2	
80	InAs quantum dots grown by MOCVD in GaAs and metamorphic InGaAs matrixes. <i>Journal of Physics: Conference Series</i> , 2017 , 816, 012024	0.3	1	
79	Transverse mode competition in narrow-ridge diode lasers. Laser Physics, 2019, 29, 025003	1.2	1	
78	Effects of Doping of Bragg Reflector Layers on the Electrical Characteristics of InGaAs/GaAs Metamorphic Photovoltaic Converters. <i>Semiconductors</i> , 2020 , 54, 476-483	0.7	1	
77	Finding the Energy Gap of Ga1 IllnxAs pl Junctions on a Metamorphic Buffer from the Photocurrent Spectrum. <i>Technical Physics Letters</i> , 2020 , 46, 332-334	0.7	1	
76	Density Control of InP/GaInP Quantum Dots Grown by Metal-Organic Vapor-Phase Epitaxy. <i>Semiconductors</i> , 2018 , 52, 497-501	0.7	1	
75	Lasers Based on Quantum Well-Dots Emitting in the 980- and 1080-nm Optical Ranges. <i>Technical Physics Letters</i> , 2019 , 45, 163-166	0.7	1	
74	Evaluation of the Impact of Surface Recombination in Microdisk Lasers by Means of High-Frequency Modulation. <i>Semiconductors</i> , 2019 , 53, 1099-1103	0.7	1	
73	Photovoltage-induced blockade of charge and spin diffusion in semiconducting thin films. <i>Journal of Applied Physics</i> , 2019 , 126, 025701	2.5	1	
72	Experimental studies of the effects of atomic ordering in epitaxial Ga x In1 P alloys on their structural and morphological properties. <i>Semiconductors</i> , 2017 , 51, 1087-1092	0.7	1	
71	High differential efficiency tilted wave laser 2014 ,		1	
70	Influence of the position of InGaAs quantum dot array on the spectral characteristics of AlGaAs/GaAs photovoltaic converters. <i>Technical Physics Letters</i> , 2012 , 38, 1024-1026	0.7	1	

69	High-power picosecond laser diodes based on different methods of fast gain control for high-precision radar applications 2007 ,		1
68	Frequency response and carrier escape time of InGaAs quantum well-dots photodiode. <i>Optics Express</i> ,	3.3	1
67	Tuning of laser power converters efficiency by means of temperature. <i>Journal of Physics:</i> Conference Series, 2020 , 1697, 012191	0.3	1
66	Comparative analysis of the optical and physical properties of InAs and In0.8Ga0.2As quantum dots. <i>Journal of Physics: Conference Series</i> , 2020 , 1697, 012107	0.3	1
65	Study of GaP Nucleation Layers Grown on Si by Plasma-Enhanced Atomic Layer Deposition. <i>Physica Status Solidi (A) Applications and Materials Science</i> , 2020 , 217, 1900532	1.6	1
64	Comparative Analysis of the Optical and Physical Properties of InAs and In0.8Ga0.2As Quantum Dots and Solar Cells Based on them. <i>Semiconductors</i> , 2020 , 54, 1267-1275	0.7	1
63	The effect of post-growth interruption on the formation of InGaAs/GaAs quantum dots obtained by MOVPE. <i>Journal of Physics: Conference Series</i> , 2019 , 1400, 055015	0.3	1
62	High-power 0.98 µm range diode lasers based on InGaAs/GaAs quantum well-dot active region. <i>Journal of Physics: Conference Series</i> , 2019 , 1400, 066045	0.3	1
61	Relation between energy gap and saturation currents in GaInAs homo p-n junctions. <i>Journal of Physics: Conference Series</i> , 2019 , 1410, 012097	0.3	1
60	Counteracting the Photovoltaic Effect in the Top Intergenerator Part of GaInP/GaAs/Ge Solar Cells. <i>Semiconductors</i> , 2019 , 53, 1535-1539	0.7	1
59	Filling of In(Ga)P/GaInP quantum dot electron states detected by microphotoluminescence. <i>Journal of Physics: Conference Series</i> , 2019 , 1400, 077013	0.3	1
58	Series spreading resistance in single- and multi-junction concentrator solar cells. <i>Journal of Physics: Conference Series</i> , 2018 , 1038, 012105	0.3	1
57	Investigation of Alloyed Ohmic Contacts in Epitaxial Tellurium-Doped Gallium Arsenide Layers. <i>Russian Microelectronics</i> , 2018 , 47, 388-392	0.5	1
56	Effect of carrier localization on performance of coupled large optical cavity diode lasers. <i>Journal of Physics: Conference Series</i> , 2018 , 1124, 041005	0.3	1
55	Reducing of thermal resistance of edge-emitting lasers based on coupled waveguides. <i>Journal of Physics: Conference Series</i> , 2018 , 1124, 041016	0.3	1
54	Electro-optical properties of InAs and In0.8Ga0.2As quantum dots in GaAs solar cells. <i>Journal of Physics: Conference Series</i> , 2018 , 1135, 012078	0.3	1
53	An Antireflection Coating of a Germanium Subcell in GaInP/GaAs/Ge Solar Cells. <i>Technical Physics Letters</i> , 2018 , 44, 1042-1044	0.7	1
52	Optical Properties of InGaAs/InAlAs Metamorphic Nanoheterostructures for Photovoltaic Converters of Laser and Solar Radiation. <i>Technical Physics Letters</i> , 2018 , 44, 877-880	0.7	1

51	Power Characteristics and Temperature Dependence of the Angular Beam Divergence of Lasers with a Near-Surface Active Region. <i>Technical Physics Letters</i> , 2018 , 44, 675-677	0.7	1
50	Current localization in heterostructures of multijunction solar cells: Causes for arising and diagnostics potential 2018 ,		1
49	Edge-emitting and microdisk lasers based on hybrid quantum-well-dot structures 2018,		1
48	Multilayer Quantum Well D ot InGaAs Heterostructures in GaAs-based Photovoltaic Converters. <i>Semiconductors</i> , 2018 , 52, 1249-1254	0.7	1
47	The Influence of the Number of Rows of GaInAs Quantum Objects on the Saturation Current of GaAs Photoconverters. <i>Technical Physics Letters</i> , 2020 , 46, 599-602	0.7	О
46	On-chip light detection using integrated microdisk laser and photodetector bonded onto Si board. <i>Laser Physics Letters</i> , 2022 , 19, 016201	1.5	O
45	High-Speed Photodetectors for the 950🛭 100 nm Optical Range Based on In0.4Ga0.6As/GaAs Quantum Well-Dot Nanostructures. <i>Technical Physics Letters</i> , 2020 , 46, 1219-1222	0.7	О
44	A Micro Optocoupler Based on a Microdisk Laser and a Photodetector with an Active Region Based on Quantum Well-Dots. <i>Technical Physics Letters</i> , 2020 , 46, 629-632	0.7	O
43	Effect of the Active Region and Waveguide Design on the Performance of Edge-Emitting Lasers Based on InGaAs/GaAs Quantum Well-Dots. <i>Semiconductors</i> , 2021 , 55, 333-340	0.7	О
42	Performance of InGaAs metamorphic laser power converters at different conditions. <i>Journal of Physics: Conference Series</i> , 2019 , 1410, 012094	0.3	О
41	Increasing the Photocurrent of a Ga(In)As Subcell in Multijunction Solar Cells Based on GaInP/Ga(In)As/Ge Heterostructure. <i>Technical Physics Letters</i> , 2019 , 45, 1258-1261	0.7	О
40	Site-Controlled Growth of Single InP QDs. Semiconductors, 2015, 49, 1095-1098	0.7	
39	Laser Power Converter Modules with a Wavelength of 809850 nm. <i>Technical Physics</i> , 2020 , 65, 1690-10	59⊕ .5	
38	Investigation of lasers based on coupled waveguides by near-field scanning optical microscopy. Journal of Physics: Conference Series, 2017 , 929, 012070	0.3	
37	Temperature characteristics of tilted wave lasers. Optical Engineering, 2016, 55, 116102	1.1	
36	Picosecond internal Q-switching mode correlates with laser diode breakdown voltage. <i>Semiconductors</i> , 2013 , 47, 406-408	0.7	
35	InAs QDs in a metamorphic In0.25Ga0.75As matrix, grown by MOCVD. <i>Semiconductors</i> , 2017 , 51, 672-6	5 78 0.7	
34	Edge-emitting lasers based on coupled large optical cavity with high beam stability. <i>Journal of Physics: Conference Series</i> , 2017 , 929, 012077	0.3	

33	Manifestation of counteracting photovoltaic effect on IV characteristics in multi-junction solar cells. <i>Journal of Physics: Conference Series</i> , 2017 , 917, 052034	0.3
32	Photovoltaic converters with quantum objects under laser flux of subband photons. <i>Journal of Physics: Conference Series</i> , 2020 , 1697, 012189	0.3
31	The study of voltage loss reasons in GaAs solar cells with embedded InGaAs quantum dots. <i>Journal of Physics: Conference Series</i> , 2020 , 1695, 012078	0.3
30	The GaAs laser photoconverter (IB09 nm) current flow mechanisms at the temperature range of 100-420 K. <i>Journal of Physics: Conference Series</i> , 2020 , 1697, 012170	0.3
29	Micro-photoluminescence of InP/GaInP2 quantum dots structures for topological quantum gates. Journal of Physics: Conference Series, 2020 , 1697, 012201	0.3
28	Investigation of microdisk and microring lasers based on InGaAs/GaAs QWDs by the interferometry method. <i>Journal of Physics: Conference Series</i> , 2020 , 1695, 012093	0.3
27	Analysis of the lasing characteristics of InGaAs/GaAs WGM microlasers. <i>Journal of Physics:</i> Conference Series, 2020 , 1695, 012096	0.3
26	Gain spectra of lasers based on transitional dimension active region. <i>Journal of Physics: Conference Series</i> , 2020 , 1697, 012177	0.3
25	Experimental investigation of the far-field emission pattern of microdisk laser modes. <i>Journal of Physics: Conference Series</i> , 2020 , 1695, 012094	0.3
24	Isotype barriers in the connecting part of multi-junction solar cells. <i>Journal of Physics: Conference Series</i> , 2020 , 1695, 012091	0.3
23	The dependence of recombination in GaAs solar cells on the number of included GaInAs quantum objects. <i>Journal of Physics: Conference Series</i> , 2020 , 1695, 012092	0.3
22	Near-field magneto-photoluminescence of GaAs/AlGaAs/InP/GaInP2 quantum well-quantum dot structures. <i>Journal of Physics: Conference Series</i> , 2021 , 1851, 012015	0.3
21	Increasing the quantum efficiency of GaAs solar cells by embedding InAs quantum dots. <i>Journal of Physics: Conference Series</i> , 2016 , 769, 012036	0.3
20	TEM Analysis of InGaAs/GaAs Quantum Well-Quantum Dot Structures for Optoelectronics Applications. <i>Microscopy and Microanalysis</i> , 2016 , 22, 1256-1257	0.5
19	Spectral method for determining quantum wells thickness and the composition in strained heterostructures GaAs/InGaAs. <i>Journal of Physics: Conference Series</i> , 2019 , 1410, 012095	0.3
18	Spectral analysis of the electroluminescence and photoresponse of heterostructures with InGaAs quantum objects. <i>Journal of Physics: Conference Series</i> , 2019 , 1410, 012099	0.3
17	Experimental study of power-limiting factors of 1.1 fb range edge-emitting lasers based on InGaAs/GaAs quantum well-dot nanostructures. <i>Journal of Physics: Conference Series</i> , 2019 , 1410, 01210	06.3
16	Transverse mode switching in quantum well-dot lasers triggered by gain saturation. <i>Journal of Physics: Conference Series</i> , 2019 , 1410, 012118	0.3

LIST OF PUBLICATIONS

On modelling optical parameters of InAs quantum dots for cascade GaInP / GaAs / Ge solar cells. Journal of Physics: Conference Series, 2019 , 1400, 066058	0.3
Heterointerfaces in the bottom tunnel part of GaInP/GaAs/Ge solar cells. <i>Journal of Physics:</i> Conference Series, 2018 , 1124, 041028	0.3
Investigation of InAs/InGaP nano-heterostructures grown by MOVPE for intermediate band solar cells. <i>Journal of Physics: Conference Series</i> , 2018 , 1124, 022030	0.3
Optical properties of In0.8Ga0.2As quantum dots in GaAs photovoltaic convertors. <i>Journal of Physics: Conference Series</i> , 2018 , 1124, 041003	0.3
Modeling of the internal quantum yield for solar cell with quantum dots <i>Journal of Physics:</i> Conference Series, 2018 , 1124, 041030	0.3
A novel approach to characterization of bottom sub-cell in multijunction solar cell using photoluminescence <i>Journal of Physics: Conference Series</i> , 2018 , 1124, 041039	0.3
InAs quantum dots for cascade GaInP / GaAs / Ge solar cells. <i>Journal of Physics: Conference Series</i> , 2018 , 1135, 012077	0.3
Diode Lasers with Near-Surface Active Region. <i>Semiconductors</i> , 2018 , 52, 1901-1904	0.7
Temperature dependencies of the refractive index for Al-Ga-In-As metamorphic layers. <i>Optics Letters</i> , 2021 , 46, 4928-4931	3
Increasing the Efficiency of 520- to 540-nm Laser Radiation Photovoltaic Converters Based on GaInP/GaAs Heterostructures. <i>Technical Physics Letters</i> , 2021 , 47, 290-292	0.7
Energy Consumption at High-Frequency Modulation of an Uncooled InGaAs/GaAs/AlGaAs Microdisk Laser. <i>Technical Physics Letters</i> , 2021 , 47, 685-688	0.7
Formation of Heterostructures of GaP/Si Photoconverters by the Combined Method of MOVPE and PEALD. <i>Technical Physics Letters</i> , 2021 , 47, 730-733	0.7
Influence of QD array positioning in GaAs solar cell p-n junction on their photoelectric characteristics. <i>Journal of Physics: Conference Series</i> , 2021 , 2103, 012192	0.3
Temperature stability of small-signal modulation response of WGM microlasers with InGaAs/GaAs quantum well-dots in the active region. <i>Journal of Physics: Conference Series</i> , 2021 , 2086, 012082	0.3
Dynamic characteristics and noise modelling of directly modulated quantum well-dots microdisk lasers on silicon. <i>Laser Physics Letters</i> , 2022 , 19, 025801	1.5
	Heterointerfaces in the bottom tunnel part of GalnP/GaAs/Ge solar cells. Journal of Physics: Conference Series, 2018, 1124, 041028 Investigation of InAs/InGaP nano-heterostructures grown by MOVPE for intermediate band solar cells. Journal of Physics: Conference Series, 2018, 1124, 022030 Optical properties of In0.8Ga0.2As quantum dots in GaAs photovoltaic convertors. Journal of Physics: Conference Series, 2018, 1124, 041003 Modeling of the internal quantum yield for solar cell with quantum dots Journal of Physics: Conference Series, 2018, 1124, 041030 A novel approach to characterization of bottom sub-cell in multijunction solar cell using photoluminescence Journal of Physics: Conference Series, 2018, 1124, 041039 InAs quantum dots for cascade GalnP / GaAs / Ge solar cells. Journal of Physics: Conference Series, 2018, 1135, 012077 Diode Lasers with Near-Surface Active Region. Semiconductors, 2018, 52, 1901-1904 Temperature dependencies of the refractive index for Al-Ga-In-As metamorphic layers. Optics Letters, 2021, 46, 4928-4931 Increasing the Efficiency of 520- to 540-nm Laser Radiation Photovoltaic Converters Based on GalnP/GaAs Heterostructures. Technical Physics Letters, 2021, 47, 290-292 Energy Consumption at High-Frequency Modulation of an Uncooled InGaAs/GaAs/AlGaAs Microdisk Laser. Technical Physics Letters, 2021, 47, 685-688 Formation of Heterostructures of GaP/Si Photoconverters by the Combined Method of MOVPE and PEALD. Technical Physics Letters, 2021, 47, 730-733 Influence of QD array positioning in GaAs solar cell p-n junction on their photoelectric characteristics. Journal of Physics: Conference Series, 2021, 2103, 012192 Temperature stability of small-signal modulation response of WGM microlasers with InGaAs/GaAs quantum well-dots in the active region. Journal of Physics: Conference Series, 2021, 2103, 012192