
Hiroyuki Arakawa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5351481/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Contrasting central and systemic effects of arginine-vasopressin on urinary marking behavior as a social signal in male mice. Hormones and Behavior, 2022, 141, 105128.	2.1	3
2	Exocrine scent marking: Coordinative role of arginine vasopressin in the systemic regulation of social signaling behaviors. Neuroscience and Biobehavioral Reviews, 2022, 136, 104597.	6.1	4
3	Wireless Optogenetic Modulation of Cortical Neurons Enabled by Radioluminescent Nanoparticles. ACS Nano, 2021, 15, 5201-5208.	14.6	31
4	Chemogenetics drives paradigm change in the investigation of behavioral circuits and neural mechanisms underlying drug action. Behavioural Brain Research, 2021, 406, 113234.	2.2	16
5	Implication of the social function of excessive self-grooming behavior in BTBR T+ltpr3tf/J mice as an idiopathic model of autism. Physiology and Behavior, 2021, 237, 113432.	2.1	18
6	Dynamic regulation of oxytocin neuronal circuits in the sequential processes of prosocial behavior in rodent models. Current Research in Neurobiology, 2021, 2, 100011.	2.3	9
7	TDP-43 inhibitory peptide alleviates neurodegeneration and memory loss in an APP transgenic mouse model for Alzheimer's disease. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2020, 1866, 165580.	3.8	17
8	Effects of gastric inhibitory polypeptide (GIP) immunoneutralization on mouse motor coordination and memory. Peptides, 2020, 125, 170227.	2.4	0
9	Restraint stress activates defensive behaviors in male rats depending on age and housing condition. Physiology and Behavior, 2020, 224, 113073.	2.1	4
10	Somatosensorimotor and Odor Modification, Along with Serotonergic Processes Underlying the Social Deficits in BTBR T+ Itpr3tf/J and BALB/cJ Mouse Models of Autism. Neuroscience, 2020, 445, 144-162.	2.3	15
11	From Multisensory Assessment to Functional Interpretation of Social Behavioral Phenotype in Transgenic Mouse Models for Autism Spectrum Disorders. Frontiers in Psychiatry, 2020, 11, 592408.	2.6	16
12	Sensorimotor developmental factors influencing the performance of laboratory rodents on learning and memory. Behavioural Brain Research, 2019, 375, 112140.	2.2	13
13	Age and sex differences in the innate defensive behaviors of C57BL/6 mice exhibited in a fear conditioning paradigm and upon exposure to a predatory odor. Physiology and Behavior, 2019, 204, 264-274.	2.1	7
14	In search of the neural circuits for prosocial behavior using rodent models: From Psychology to Behavioral Neuroscience. The Proceedings of the Annual Convention of the Japanese Psychological Association, 2019, 83, ITL-004-ITL-004.	0.0	0
15	Ethological and multi-behavioral analysis of learning and memory performance in laboratory rodent models. Neuroscience Research, 2018, 135, 1-12.	1.9	31
16	Ethological approach to social isolation effects in behavioral studies of laboratory rodents. Behavioural Brain Research, 2018, 341, 98-108.	2.2	118
17	Analysis of Social Process in Two Inbred Strains of Male Mice: A Predominance of Contact-Based Investigation in BALB/c Mice. Neuroscience, 2018, 369, 124-138.	2.3	12
18	Motor-Coordinative and Cognitive Dysfunction Caused by Mutant TDP-43 Could Be Reversed by Inhibiting Its Mitochondrial Localization. Molecular Therapy, 2017, 25, 127-139.	8.2	58

HIROYUKI ARAKAWA

#	Article	IF	CITATIONS
19	Neurofibromatosis type 1 alternative splicing is a key regulator of Ras/ERK signaling and learning behaviors in mice. Human Molecular Genetics, 2017, 26, 3797-3807.	2.9	20
20	Cholesterol-metabolizing enzyme cytochrome P450 46A1 as a pharmacologic target for Alzheimer's disease. Neuropharmacology, 2017, 123, 465-476.	4.1	81
21	Behavioral Consequences of a Bifacial Map in the Mouse Somatosensory Cortex. Journal of Neuroscience, 2017, 37, 7209-7218.	3.6	14
22	Long-Term Deficits in Behavior Performances Caused by Low- and High-Linear Energy Transfer Radiation. Radiation Research, 2017, 188, 752-760.	1.5	12
23	Lack of TRPM5-Expressing Microvillous Cells in Mouse Main Olfactory Epithelium Leads to Impaired Odor-Evoked Responses and Olfactory-Guided Behavior in a Challenging Chemical Environment. ENeuro, 2017, 4, ENEURO.0135-17.2017.	1.9	28
24	Involvement of serotonin and oxytocin in neural mechanism regulating amicable social signal in male mice: Implication for impaired recognition of amicable cues in BALB/c strain Behavioral Neuroscience, 2017, 131, 176-191.	1.2	17
25	Central oxytocin regulates social familiarity and scent marking behavior that involves amicable odor signals between male mice. Physiology and Behavior, 2015, 146, 36-46.	2.1	35
26	Role of whiskers in sensorimotor development of C57BL/6 mice. Behavioural Brain Research, 2015, 287, 146-155.	2.2	66
27	Effects of the Estrous Cycle and Ovarian Hormones on Central Expression of Interleukin-1 Evoked by Stress in Female Rats. Neuroendocrinology, 2014, 100, 162-177.	2.5	36
28	Thalamic NMDA Receptor Function Is Necessary for Patterning of the Thalamocortical Somatosensory Map and for Sensorimotor Behaviors. Journal of Neuroscience, 2014, 34, 12001-12014.	3.6	43
29	Region-Specific Disruption of Adenylate Cyclase Type 1 Gene Differentially Affects Somatosensorimotor Behaviors in Mice. ENeuro, 2014, 1, ENEURO.0007-14.2014.	1.9	13
30	Region-Specific Disruption of Adenylate Cyclase Type 1 Gene Differentially Affects Somatosensorimotor Behaviors in Mice. ENeuro, 2014, 1, .	1.9	2
31	The Receptor Guanylyl Cyclase Type D (GC-D) Ligand Uroguanylin Promotes the Acquisition of Food Preferences in Mice. Chemical Senses, 2013, 38, 391-397.	2.0	43
32	In vivo imaging of brain metabolism activity using a phosphorescent oxygen-sensitive probe. Journal of Neuroscience Methods, 2013, 216, 146-151.	2.5	40
33	Attractiveness of illness-associated odorant cues in female rats is modulated by ovarian hormones, but not associated with pro-inflammatory cytokine levels. Brain, Behavior, and Immunity, 2012, 26, 40-49.	4.1	14
34	From models to mechanisms: Odorant communication as a key determinant of social behavior in rodents during illness-associated states. Neuroscience and Biobehavioral Reviews, 2011, 35, 1916-1928.	6.1	108
35	The role of neuroinflammation in the release of aversive odor cues from footshock-stressed rats: Implications for the neural mechanism of alarm pheromone. Psychoneuroendocrinology, 2011, 36, 557-568.	2.7	20
36	Oxytocin and vasopressin in the medial amygdala differentially modulate approach and avoidance behavior toward illness-related social odor. Neuroscience, 2010, 171, 1141-1151.	2.3	101

HIROYUKI ARAKAWA

#	Article	IF	CITATIONS
37	Sickness-related odor communication signals as determinants of social behavior in rat: A role for inflammatory processes. Hormones and Behavior, 2010, 57, 330-341.	2.1	64
38	Validation of a novel social investigation task that may dissociate social motivation from exploratory activity. Behavioural Brain Research, 2009, 199, 326-333.	2.2	20
39	Social features of scent-donor mice modulate scent marking of C57BL/6J recipient males. Behavioural Brain Research, 2009, 205, 138-145.	2.2	29
40	Central infusion of interleukin-1 receptor antagonist blocks the reduction in social behavior produced by prior stressor exposure. Physiology and Behavior, 2009, 98, 139-146.	2.1	61
41	Acute illness induces the release of aversive odor cues from adult, but not prepubertal, male rats and suppresses social investigation by conspecifics Behavioral Neuroscience, 2009, 123, 964-978.	1.2	37
42	Scent marking behavior as an odorant communication in mice. Neuroscience and Biobehavioral Reviews, 2008, 32, 1236-1248.	6.1	193
43	A new test paradigm for social recognition evidenced by urinary scent marking behavior in C57BL/6J mice. Behavioural Brain Research, 2008, 190, 97-104.	2.2	73
44	Ontogenetic interaction between social relationships and defensive burying behavior in the rat. Physiology and Behavior, 2007, 90, 751-759.	2.1	31
45	Colony formation of C57BL/6J mice in visible burrow system: Identification of eusocial behaviors in a background strain for genetic animal models of autism. Behavioural Brain Research, 2007, 176, 27-39.	2.2	80
46	Scent marking behavior in male C57BL/6J mice: Sexual and developmental determination. Behavioural Brain Research, 2007, 182, 73-79.	2.2	55
47	Ontogeny of sex differences in defensive burying behavior in rats: effect of social isolation. Aggressive Behavior, 2007, 33, 38-47.	2.4	35
48	Age-dependent change in exploratory behavior of male rats following exposure to threat stimulus: Effect of juvenile experience. Developmental Psychobiology, 2007, 49, 522-530.	1.6	16
49	Changes in the pattern of exploratory behavior are associated with the emergence of social dominance relationships in male rats. Developmental Psychobiology, 2006, 48, 39-47.	1.6	21
50	Interaction between isolation rearing and social development on exploratory behavior in male rats. Behavioural Processes, 2005, 70, 223-234.	1.1	66
51	Age dependent effects of space limitation and social tension on open-field behavior in male rats. Physiology and Behavior, 2005, 84, 429-436.	2.1	42
52	The effects of isolation rearing on openâ€field behavior in male rats depends on developmental stages. Developmental Psychobiology, 2003, 43, 11-19.	1.6	70
53	The effects of age and isolation period on two phases of behavioral response to foot shock in isolation-reared rats. Developmental Psychobiology, 2002, 41, 15-24.	1.6	19
54	Urea cycle disorder in C3Hâ€Hâ€2° mice with juvenile steatosis of viscera. FEBS Letters, 1990, 260, 119-121.	2.8	30