Kasi Pandima Devi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5351472/publications.pdf

Version: 2024-02-01

93 papers 4,957 citations

101384 36 h-index 98622 67 g-index

93 all docs 93
docs citations

93 times ranked 8100 citing authors

#	Article	IF	CITATIONS
1	Harnessing polyphenol power by targeting eNOS for vascular diseases. Critical Reviews in Food Science and Nutrition, 2023, 63, 2093-2118.	5.4	10
2	Phytol loaded PLGA nanoparticles ameliorate scopolamine-induced cognitive dysfunction by attenuating cholinesterase activity, oxidative stress and apoptosis in Wistar rat. Nutritional Neuroscience, 2022, 25, 485-501.	1.5	16
3	A perspective on the applications of furin inhibitors for the treatment of SARS-CoV-2. Pharmacological Reports, 2022, 74, 425-430.	1.5	10
4	Thymol induces mitochondrial pathway-mediated apoptosis via ROS generation, macromolecular damage and SOD diminution in A549 cells. Pharmacological Reports, 2021, 73, 240-254.	1.5	22
5	Vitexin prevents $\hat{Al^2}$ proteotoxicity in transgenic <i>Caenorhabditis elegans</i> model of Alzheimer's disease by modulating unfolded protein response. Journal of Biochemical and Molecular Toxicology, 2021, 35, e22632.	1.4	12
6	Mitigation of oxidative stress with dihydroactinidiolide, a natural product against scopolamine-induced amnesia in Swiss albino mice. NeuroToxicology, 2021, 86, 149-161.	1.4	4
7	Phytol loaded PLGA nanoparticles regulate the expression of Alzheimer's related genes and neuronal apoptosis against amyloid-β induced toxicity in Neuro-2a cells and transgenic Caenorhabditis elegans. Food and Chemical Toxicology, 2020, 136, 110962.	1.8	27
8	Therapeutic potential of polyphenols in cardiovascular diseases: Regulation of mTOR signaling pathway. Pharmacological Research, 2020, 152, 104626.	3.1	77
9	Autophagy: A Potential Therapeutic Target of Polyphenols in Hepatocellular Carcinoma. Cancers, 2020, 12, 562.	1.7	56
10	Deciphering the anti-apoptotic potential of \hat{l}_{\pm} -bisabolol loaded solid lipid nanoparticles against \hat{Al}^2 induced neurotoxicity in Neuro-2a cells. Colloids and Surfaces B: Biointerfaces, 2020, 190, 110948.	2.5	32
11	Gelidiella acerosa Exhibits Neuroprotective Effect Against Amyloid Beta 25–35 Peptide–Induced Toxicity in PC12 Cells. Journal of Dietary Supplements, 2019, 16, 491-505.	1.4	3
12	Amyloid-β induced neuropathological actions are suppressed by Padina gymnospora (Phaeophyceae) and its active constituent α-bisabolol in Neuro2a cells and transgenic Caenorhabditis elegans Alzheimer's model. Nitric Oxide - Biology and Chemistry, 2019, 91, 52-66.	1.2	34
13	Phosphodiesterase inhibitors say NO to Alzheimer's disease. Food and Chemical Toxicology, 2019, 134, 110822.	1.8	52
14	\hat{l} ±-bisabolol \hat{l}^2 -D-fucopyranoside as a potential modulator of \hat{l}^2 -amyloid peptide induced neurotoxicity: An in vitro & silico study. Bioorganic Chemistry, 2019, 88, 102935.	2.0	17
15	Daucosterol disturbs redox homeostasis and elicits oxidative-stress mediated apoptosis in A549†cells via targeting thioredoxin reductase by a p53 dependent mechanism. European Journal of Pharmacology, 2019, 855, 112-123.	1.7	13
16	Novel therapeutic strategies for stroke: The role of autophagy. Critical Reviews in Clinical Laboratory Sciences, 2019, 56, 182-199.	2.7	40
17	Targeting STATs in neuroinflammation: The road less traveled!. Pharmacological Research, 2019, 141, 73-84.	3.1	26
18	Targeting Hedgehog signaling pathway: Paving the road for cancer therapy. Pharmacological Research, 2019, 141, 466-480.	3.1	60

#	Article	IF	CITATIONS
19	Phytol ameliorated benzo(a)pyrene induced lung carcinogenesis in Swiss albino mice via inhibition of oxidative stress and apoptosis. Environmental Toxicology, 2019, 34, 355-363.	2.1	14
20	Rutin as Neuroprotective Agent: From Bench to Bedside. Current Medicinal Chemistry, 2019, 26, 5152-5164.	1,2	70
21	Phytol-loaded PLGA nanoparticle as a modulator of Alzheimerâ \in ™s toxic AÎ ² peptide aggregation and fibrillation associated with impaired neuronal cell function. Artificial Cells, Nanomedicine and Biotechnology, 2018, 46, 1-12.	1.9	26
22	Assessment of antioxidant, anticholinesterase and antiamyloidogenic effect of Terminalia chebula, Terminalia arjuna and its bioactive constituent 7-Methyl gallic acid – An in vitro and in silico studies. Journal of Molecular Liquids, 2018, 257, 69-81.	2.3	25
23	\hat{l}^2 -Sitosterol targets Trx/Trx1 reductase to induce apoptosis in A549 cells via ROS mediated mitochondrial dysregulation and p53 activation. Scientific Reports, 2018, 8, 2071.	1.6	71
24	Biogenic synthesis of silver nanoparticles using Piper betle aqueous extract and evaluation of its anti-quorum sensing and antibiofilm potential against uropathogens with cytotoxic effects: an in vitro and in vivo approach. Environmental Science and Pollution Research, 2018, 25, 10538-10554.	2.7	45
25	Grewia tiliaefolia and its active compound vitexin regulate the expression of glutamate transporters and protect Neuro-2a cells from glutamate toxicity. Life Sciences, 2018, 203, 233-241.	2.0	24
26	Vitexin inhibits $\hat{Al^2}$ 25-35 induced toxicity in Neuro-2a cells by augmenting Nrf-2/HO-1 dependent antioxidant pathway and regulating lipid homeostasis by the activation of LXR- \hat{l}_{\pm} . Toxicology in Vitro, 2018, 50, 160-171.	1.1	42
27	Anti-amyloidogenic and anti-apoptotic effect of \hat{l} ±-bisabolol against $\hat{Al^2}$ induced neurotoxicity in PC12 cells. European Journal of Medicinal Chemistry, 2018, 143, 1196-1207.	2.6	37
28	Regulation of autophagy by polyphenols: Paving the road for treatment of neurodegeneration. Biotechnology Advances, 2018, 36, 1768-1778.	6.0	56
29	Dihydroactinidiolide, a natural product against \hat{A}^2 25-35 induced toxicity in Neuro2a cells: Synthesis, in silico and in vitro studies. Bioorganic Chemistry, 2018, 81, 340-349.	2.0	26
30	\hat{l}_{\pm} -Bisabolol loaded solid lipid nanoparticles attenuates $\hat{Al^2}$ aggregation and protects Neuro-2a cells from $\hat{Al^2}$ induced neurotoxicity. Journal of Molecular Liquids, 2018, 264, 431-441.	2.3	32
31	Phytol shows anti-angiogenic activity and induces apoptosis in A549 cells by depolarizing the mitochondrial membrane potential. Biomedicine and Pharmacotherapy, 2018, 105, 742-752.	2.5	63
32	Targeting miRNAs by polyphenols: Novel therapeutic strategy for cancer. Seminars in Cancer Biology, 2017, 46, 146-157.	4.3	71
33	Beta sitosterol and Daucosterol (phytosterols identified in Grewia tiliaefolia) perturbs cell cycle and induces apoptotic cell death in A549 cells. Scientific Reports, 2017, 7, 3418.	1.6	77
34	<i>Gelidiella acerosa</i> protects against Aβ 25–35-induced toxicity and memory impairment in Swiss Albino mice: an <i>in vivo</i> protects against Aβ 25–35-induced toxicity and memory impairment in Swiss Albino mice: an <i>in vivo</i> protects against Aβ 25–35-induced toxicity and memory impairment in Swiss Albino mice: an <i>in vivo</i> protects against Aβ 25–35-induced toxicity and memory impairment in Swiss Albino mice: an <i>in vivo</i> protects against Aβ 25–35-induced toxicity and memory impairment in Swiss Albino mice: an <i>in vivo</i> protects against Aβ 25–35-induced toxicity and memory impairment in Swiss Albino mice: an <i>in vivo</i> protects against Aβ 25–35-induced toxicity and memory impairment in Swiss Albino mice: an <i>in vivo</i> protects against Aβ 25–35-induced toxicity and memory impairment in Swiss Albino mice: an <i>in vivo</i> in vivoin viv	1.3	21
35	Cholinesterase inhibitory, anti-amyloidogenic and neuroprotective effect of the medicinal plant <i>Grewia tiliaefolia ⟨i⟩ – An ⟨i⟩in vitro⟨i⟩ and ⟨i⟩in silico⟨i⟩ study. Pharmaceutical Biology, 2017, 55, 381-393.</i>	1.3	36
36	Targeting signal transducers and activators of transcription (STAT) in human cancer by dietary polyphenolic antioxidants. Biochimie, 2017, 142, 63-79.	1.3	46

#	Article	IF	CITATIONS
37	Molecular and Therapeutic Targets of Genistein in Alzheimer's Disease. Molecular Neurobiology, 2017, 54, 7028-7041.	1.9	61
38	A Mini Review on the Chemistry and Neuroprotective Effects of Silymarin. Current Drug Targets, 2017, 18, 1529-1536.	1.0	22
39	Rhizophora mucronata attenuates beta-amyloid induced cognitive dysfunction, oxidative stress and cholinergic deficit in Alzheimer's disease animal model. Metabolic Brain Disease, 2016, 31, 937-949.	1.4	16
40	Neuroprotective effect of the marine macroalga <i>Gelidiella acerosa</i> : identification of active compounds through bioactivity-guided fractionation. Pharmaceutical Biology, 2016, 54, 2073-2081.	1.3	30
41	Molecular targets of curcumin for cancer therapy: an updated review. Tumor Biology, 2016, 37, 13017-13028.	0.8	157
42	Evaluation of the nutritional profile and antioxidant and anti-cholinesterase activities of <i>Padina gymnospora </i> (Phaeophyceae). European Journal of Phycology, 2016, 51, 482-490.	0.9	19
43	Targeting mTOR signaling by polyphenols: A new therapeutic target for ageing. Ageing Research Reviews, 2016, 31, 55-66.	5.0	58
44	Bioactive effects of quercetin in the central nervous system: Focusing on the mechanisms of actions. Biomedicine and Pharmacotherapy, 2016, 84, 892-908.	2.5	165
45	<i>In vitro</i> antiaggregation and deaggregation potential of <i>Rhizophora mucronata</i> and its bioactive compound (+)- catechin against Alzheimer's beta amyloid peptide (25–35). Neurological Research, 2016, 38, 1041-1051.	0.6	7
46	2,3,7,8-TCDD-mediated toxicity in peripheral blood mononuclear cells is alleviated by the antioxidants present in Gelidiella acerosa: an in vitro study. Environmental Science and Pollution Research, 2016, 23, 5111-5121.	2.7	8
47	Protective effect of catechin rich extract of Rhizophora mucronata against \hat{l}^2 -amyloid-induced toxicity in PC12 cells. Journal of Applied Biomedicine, 2016, 14, 137-146.	0.6	29
48	Gracilaria edulis exhibit antiproliferative activity against human lung adenocarcinoma cell line A549 without causing adverse toxic effect in vitro and in vivo. Food and Function, 2016, 7, 1155-1165.	2.1	22
49	Alpha-bisabolol from brown macroalga Padina gymnospora mitigates biofilm formation and quorum sensing controlled virulence factor production in Serratia marcescens. Journal of Applied Phycology, 2016, 28, 1987-1996.	1.5	43
50	Understanding genistein in cancer: The "good―and the "bad―effects: A review. Food Chemistry, 2016, 196, 589-600.	4.2	185
51	Olive oil and its phenolic compounds (hydroxytyrosol and tyrosol) ameliorated TCDD-induced heptotoxicity in rats via inhibition of oxidative stress and apoptosis. Pharmaceutical Biology, 2016, 54, 338-346.	1.3	45
52	<i>In vitro</i> antioxidant and anti-cholinesterase activities of <i>Rhizophora mucronata</i> Pharmaceutical Biology, 2016, 54, 118-129.	1.3	42
53	Antiaggregation Potential of Padina gymnospora against the Toxic Alzheimer's Beta-Amyloid Peptide 25–35 and Cholinesterase Inhibitory Property of Its Bioactive Compounds. PLoS ONE, 2015, 10, e0141708.	1.1	39
54	Kaempferol and inflammation: From chemistry to medicine. Pharmacological Research, 2015, 99, 1-10.	3.1	417

#	Article	IF	CITATIONS
55	Hesperidin: A promising anticancer agent from nature. Industrial Crops and Products, 2015, 76, 582-589.	2.5	103
56	Omega-3 polyunsaturated fatty acids and cancer: lessons learned from clinical trials. Cancer and Metastasis Reviews, 2015, 34, 359-380.	2.7	118
57	Genistein and Cancer: Current Status, Challenges, and Future Directions. Advances in Nutrition, 2015, 6, 408-419.	2.9	405
58	Evaluation of inÂvitro and inÂvivo safety profile of the Indian traditional medicinal plant Grewia tiliaefolia. Regulatory Toxicology and Pharmacology, 2015, 73, 241-247.	1.3	15
59	Molecular mechanisms underlying anticancer effects of myricetin. Life Sciences, 2015, 142, 19-25.	2.0	111
60	Olive oil and its phenolic constituent tyrosol attenuates dioxin-induced toxicity in peripheral blood mononuclear cells via an antioxidant-dependent mechanism. Natural Product Research, 2015, 29, 2129-2132.	1.0	12
61	Evaluation of physicochemical properties, proximate and nutritional composition of Gracilaria edulis collected from Palk Bay. Food Chemistry, 2015, 174, 68-74.	4.2	59
62	Silymarin prevents benzo(a)pyrene-induced toxicity in Wistar rats by modulating xenobiotic-metabolizing enzymes. Toxicology and Industrial Health, 2015, 31, 523-541.	0.6	15
63	Assessment of anti-amyloidogenic activity of marine red alga <i>G. acerosa</i> against Alzheimer's beta-amyloid peptide 25–35. Neurological Research, 2015, 37, 14-22.	0.6	14
64	Antioxidant compounds in the seaweedGelidiella acerosaprotects human Peripheral Blood Mononuclear Cells against TCDD induced toxicity. Drug and Chemical Toxicology, 2015, 38, 133-144.	1.2	4
65	Ferulic Acid and Alzheimer's Disease: Promises and Pitfalls. Mini-Reviews in Medicinal Chemistry, 2015, 15, 776-788.	1.1	36
66	Molecular Targets of Omega-3 Fatty Acids for Cancer Therapy. Anti-Cancer Agents in Medicinal Chemistry, 2015, 15, 888-895.	0.9	10
67	Silymarin prevents the toxicity induced by benzo(a)pyrene in human erythrocytes by preserving its membrane integrity: An <i>in vitro</i> study. Environmental Toxicology, 2014, 29, 165-175.	2.1	7
68	Safety and toxicological evaluation of Rhizopora mucronata (a mangrove from Vellar estuary, India): assessment of mutagenicity, genotoxicity and in vivo acute toxicity. Molecular Biology Reports, 2014, 41, 1355-1371.	1.0	6
69	Dietary Polyphenols for Treatment of Alzheimerâ∈™s Disease– Future Research and Development. Current Pharmaceutical Biotechnology, 2014, 15, 330-342.	0.9	56
70	Eugenol alters the integrity of cell membrane and acts against the nosocomial pathogen Proteus mirabilis. Archives of Pharmacal Research, 2013, 36, 282-292.	2.7	76
71	Evaluation of Gelidiella acerosa, the red algae inhabiting South Indian coastal area for antioxidant and metal chelating potential. Biomedicine and Preventive Nutrition, 2013, 3, 399-406.	0.9	13
72	Antioxidant and anti-cholinesterase activity of <i>Sargassum wightii </i> . Pharmaceutical Biology, 2013, 51, 1401-1410.	1.3	32

#	Article	IF	CITATIONS
73	Plants traditionally used in age-related brain disorders (dementia): an ethanopharmacological survey. Pharmaceutical Biology, 2013, 51, 492-523.	1.3	36
74	Silymarin attenuates benzo(a)pyrene induced toxicity by mitigating ROS production, DNA damage and calcium mediated apoptosis in peripheral blood mononuclear cells (PBMC). Ecotoxicology and Environmental Safety, 2012, 86, 79-85.	2.9	28
75	p53 Exon 4 (codon 72) Polymorphism and Exon 7 (codon 249) Mutation in Breast Cancer Patients in Southern Region(Madurai) of Tamil Nadu. Asian Pacific Journal of Cancer Prevention, 2012, 13, 511-516.	0.5	24
76	Silymarin protects PBMC against B(a)P induced toxicity by replenishing redox status and modulating glutathione metabolizing enzymes—An in vitro study. Toxicology and Applied Pharmacology, 2010, 247, 116-128.	1.3	36
77	Synergistic effect of hydroxypropyl-β-cyclodextrin encapsulated soluble ferrocene and the gold nanocomposite modified glassy carbon electrode for the estimation of NO in biological systems. Analyst, The, 2010, 135, 2348.	1.7	10
78	Neuroprotective effect of seaweeds inhabiting South Indian coastal area (Hare Island, Gulf of Mannar) Tj ETQq0 Neuroscience Letters, 2010, 468, 216-219.	0 0 rgBT /0 1.0	Overlock 10 1 62
79	Eugenol (an essential oil of clove) acts as an antibacterial agent against Salmonella typhi by disrupting the cellular membrane. Journal of Ethnopharmacology, 2010, 130, 107-115.	2.0	615
80	Study of p53 codon 72 polymorphism and codon 249 mutations in Southern India in relation to age, alcohol drinking and smoking habits. Human and Experimental Toxicology, 2010, 29, 451-458.	1.1	6
81	Mangrove Plant Extracts: Radical Scavenging Activity and the Battle against Food-Borne Pathogens. Complementary Medicine Research, 2009, 16, 41-48.	0.5	13
82	Cholinesterase inhibitors from <i>Sargassum </i> and <i>Gracilaria gracilis </i> : Seaweeds inhabiting South Indian coastal areas (Hare Island, Gulf of Mannar). Natural Product Research, 2009, 23, 355-369.	1.0	41
83	Cholinesterase inhibitory effects of i>Rhizophora lamarckii, Avicennia officinalis, Sesuvium portulacastrum and Suaeda monica: /i>Mangroves inhabiting an Indian coastal area (Vellar Estuary). Journal of Enzyme Inhibition and Medicinal Chemistry, 2009, 24, 702-707.	2.5	30
84	Olive oil protects rat liver microsomes against benzo(a)pyrene-induced oxidative damages: Anin vitro study. Molecular Nutrition and Food Research, 2008, 52 Suppl 1, S95-102.	1.5	3
85	Bioprotective properties of seaweeds: In vitro evaluation of antioxidant activity and antimicrobial activity against food borne bacteria in relation to polyphenolic content. BMC Complementary and Alternative Medicine, 2008, 8, 38.	3.7	154
86	Protective effect of silymarin on erythrocyte haemolysate against benzo(a)pyrene and exogenous reactive oxygen species (H2O2) induced oxidative stress. Chemosphere, 2007, 68, 1511-1518.	4.2	60
87	Cholinesterase Activity in Clam Meretrix casta: Possible Biomarker for Organophosphate Pesticide Pollution. Bulletin of Environmental Contamination and Toxicology, 2005, 74, 250-255.	1.3	6
88	Protective effect of Premna tomentosa extract (L. verbanacae) on acetaminophen-induced mitochondrial dysfunction in rats. Molecular and Cellular Biochemistry, 2005, 272, 171-177.	1.4	16
89	Assessment of the Protective Potential ofPremna tomentosa(L. Verbenaceae) Extract on Lipid Profile and Lipid-Metabolizing Enzymes in Acetaminophen-Intoxicated Rats. Journal of Alternative and Complementary Medicine, 2004, 10, 540-546.	2.1	10
90	Immunomodulatory Effects of Premna tomentosa (L. Verbenaceae) Extract in J 779 Macrophage Cell Cultures Under Chromate (VI)-Induced Immunosuppression. Journal of Alternative and Complementary Medicine, 2004, 10, 535-539.	2.1	8

#	Article	IF	CITATION
91	Protective effect of Premna tomentosa (L. Verbenaceae) extract on membrane-bound phosphatases and inorganic cations transport in acetaminophen-induced hepatotoxicity rats. Journal of Ethnopharmacology, 2004, 93, 371-375.	2.0	20
92	Antinociceptive and hypnotic effects of Premna tomentosa L. (Verbenaceae) in experimental animals. Pharmacology Biochemistry and Behavior, 2003, 75, 261-264.	1.3	12
93	Immunomodulatory effects of Premna tomentosa extract against Cr (VI) induced toxicity in splenic lymphocytes—an in vitro study. Biomedicine and Pharmacotherapy, 2003, 57, 105-108.	2.5	17