Wilma van de Berg

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5351298/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Cortical axonal loss is associated with both gray matter demyelination and white matter tract pathology in progressive multiple sclerosis: Evidence from a combined MRI-histopathology study. Multiple Sclerosis Journal, 2021, 27, 380-390.	1.4	13
2	Cingulate networks associated with gray matter loss in Parkinson's disease show high expression of cholinergic genes in the healthy brain. European Journal of Neuroscience, 2021, 53, 3727-3739.	1.2	5
3	The subcellular arrangement of alpha-synuclein proteoforms in the Parkinson's disease brain as revealed by multicolor STED microscopy. Acta Neuropathologica, 2021, 142, 423-448.	3.9	65
4	Differential insular cortex sub-regional atrophy in neurodegenerative diseases: a systematic review and meta-analysis. Brain Imaging and Behavior, 2020, 14, 2799-2816.	1.1	36
5	CSF or Serum Neurofilament Light Added to αâ€Synuclein Panel Discriminates Parkinson's From Controls. Movement Disorders, 2020, 35, 288-295.	2.2	69
6	Dementia With Lewy Bodies. Alzheimer Disease and Associated Disorders, 2020, 34, 178-182.	0.6	5
7	Relationship between β-amyloid and structural network topology in decedents without dementia. Neurology, 2020, 95, e532-e544.	1.5	17
8	High-Intensity Interval Cycle Ergometer Training in Parkinson's Disease: Protocol for Identifying Individual Response Patterns Using a Single-Subject Research Design. Frontiers in Neurology, 2020, 11, 569880.	1.1	4
9	CSF Biomarkers Reflecting Protein Pathology and Axonal Degeneration Are Associated with Memory, Attentional, and Executive Functioning in Early-Stage Parkinson′s Disease. International Journal of Molecular Sciences, 2020, 21, 8519.	1.8	7
10	Anterior insular network disconnection and cognitive impairment in Parkinson's disease. NeuroImage: Clinical, 2020, 28, 102364.	1.4	20
11	The coarse-grained plaque: a divergent Aβ plaque-type in early-onset Alzheimer's disease. Acta Neuropathologica, 2020, 140, 811-830.	3.9	45
12	Contactin-1 Is Reduced in Cerebrospinal Fluid of Parkinson's Disease Patients and Is Present within Lewy Bodies. Biomolecules, 2020, 10, 1177.	1.8	14
13	Alterations in Sub-Axonal Architecture Between Normal Aging and Parkinson's Diseased Human Brains Using Label-Free Cryogenic X-ray Nanotomography. Frontiers in Neuroscience, 2020, 14, 570019.	1.4	2
14	CSF total and oligomeric α-Synuclein along with TNF-α as risk biomarkers for Parkinson's disease: a study in LRRK2 mutation carriers. Translational Neurodegeneration, 2020, 9, 15.	3.6	32
15	Transcriptomic signatures of brain regional vulnerability to Parkinson's disease. Communications Biology, 2020, 3, 101.	2.0	58
16	Clinical and Pathological Phenotypes of LRP10 Variant Carriers with Dementia. Journal of Alzheimer's Disease, 2020, 76, 1161-1170.	1.2	7
17	A <scp>Large cale</scp> Full <scp> <i>GBA1</i> </scp> Gene Screening in Parkinson's Disease in the Netherlands. Movement Disorders, 2020, 35, 1667-1674.	2.2	41
18	Neuropathological correlates of parkinsonian disorders in a large Dutch autopsy series. Acta Neuropathologica Communications, 2020, 8, 39.	2.4	28

WILMA VAN DE BERG

#	Article	IF	CITATIONS
19	The adult human subventricular zone: partial ependymal coverage and proliferative capacity of cerebrospinal fluid. Brain Communications, 2020, 2, fcaa150.	1.5	10
20	A lathe system for micrometre-sized cylindrical sample preparation at room and cryogenic temperatures. Journal of Synchrotron Radiation, 2020, 27, 472-476.	1.0	12
21	Differential insular cortex subregional vulnerability to αâ€ s ynuclein pathology in Parkinson's disease and dementia with Lewy bodies. Neuropathology and Applied Neurobiology, 2019, 45, 262-277.	1.8	36
22	Characterization of Brain Lysosomal Activities in GBA-Related and Sporadic Parkinson's Disease and Dementia with Lewy Bodies. Molecular Neurobiology, 2019, 56, 1344-1355.	1.9	97
23	Imaging of post-mortem human brain tissue using electron and X-ray microscopy. Current Opinion in Structural Biology, 2019, 58, 138-148.	2.6	20
24	Axonal degeneration as substrate of fractional anisotropy abnormalities in multiple sclerosis cortex. Brain, 2019, 142, 1921-1937.	3.7	38
25	Lewy pathology in Parkinson's disease consists of crowded organelles and lipid membranes. Nature Neuroscience, 2019, 22, 1099-1109.	7.1	604
26	Transcriptome and proteome profiling of neural stem cells from the human subventricular zone in Parkinson's disease. Acta Neuropathologica Communications, 2019, 7, 84.	2.4	28
27	Normal Aging Brain Collection Amsterdam (NABCA): A comprehensive collection of postmortem high-field imaging, neuropathological and morphometric datasets of non-neurological controls. NeuroImage: Clinical, 2019, 22, 101698.	1.4	25
28	Post-Mortem MRI and Histopathology in Neurologic Disease: A Translational Approach. Neuroscience Bulletin, 2019, 35, 229-243.	1.5	18
29	Neuropathological and genetic characteristics of a post-mortem series of cases with dementia with Lewy bodies clinically suspected of Creutzfeldt-Jakob's disease. Parkinsonism and Related Disorders, 2019, 63, 162-168.	1.1	11
30	Can post-mortem MRI be used as a proxy for in vivo? A case study. Brain Communications, 2019, 1, fcz030.	1.5	17
31	Prefrontal cortical ChAT-VIP interneurons provide local excitation by cholinergic synaptic transmission and control attention. Nature Communications, 2019, 10, 5280.	5.8	65
32	Path mediation analysis reveals GBA impacts Lewy body disease status by increasing α-synuclein levels. Neurobiology of Disease, 2019, 121, 205-213.	2.1	43
33	7T MRI allows detection of disturbed cortical lamination of the medial temporal lobe in patients with Alzheimer's disease. Neurolmage: Clinical, 2019, 21, 101665.	1.4	28
34	α‧ynuclein species as potential cerebrospinal fluid biomarkers for dementia with lewy bodies. Movement Disorders, 2018, 33, 1724-1733.	2.2	79
35	Cerebral Corpora amylacea are dense membranous labyrinths containing structurally preserved cell organelles. Scientific Reports, 2018, 8, 18046.	1.6	21
36	A comprehensive analysis of <i>SNCA</i> â€related genetic risk in sporadic parkinson disease. Annals of Neurology, 2018, 84, 117-129.	2.8	50

WILMA VAN DE BERG

#	Article	IF	CITATIONS
37	LRP10 genetic variants in familial Parkinson's disease and dementia with Lewy bodies: a genome-wide linkage and sequencing study. Lancet Neurology, The, 2018, 17, 597-608.	4.9	101
38	Increased levels of CSF total but not oligomeric or phosphorylated forms of alpha-synuclein in patients diagnosed with probable Alzheimer's disease. Scientific Reports, 2017, 7, 40263.	1.6	51
39	Therapeutic potential of autophagy-enhancing agents in Parkinson's disease. Molecular Neurodegeneration, 2017, 12, 11.	4.4	211
40	Nitric Oxide Production in the Striatum and Cerebellum of a Rat Model of Preterm Global Perinatal Asphyxia. Neurotoxicity Research, 2017, 31, 400-409.	1.3	8
41	LRRK2 levels and phosphorylation in Parkinson's disease brain and cases with restricted Lewy bodies. Movement Disorders, 2017, 32, 423-432.	2.2	39
42	Loss of Functional Connectivity in Patients with Parkinson Disease and Visual Hallucinations. Radiology, 2017, 285, 896-903.	3.6	44
43	Damaged fiber tracts of the nucleus basalis of Meynert in Parkinson's disease patients with visual hallucinations. Scientific Reports, 2017, 7, 10112.	1.6	36
44	An update on the genetics of dementia with Lewy bodies. Parkinsonism and Related Disorders, 2017, 43, 1-8.	1.1	31
45	Origin of α-mannosidase activity in CSF. International Journal of Biochemistry and Cell Biology, 2017, 87, 34-37.	1.2	7
46	Distribution and Load of Amyloid-β Pathology in Parkinson Disease and Dementia with Lewy Bodies. Journal of Neuropathology and Experimental Neurology, 2016, 75, 936-945.	0.9	109
47	Lysosomal Dysfunction and α ynuclein Aggregation in Parkinson's Disease: Diagnostic Links. Movement Disorders, 2016, 31, 791-801.	2.2	125
48	Oligomeric and phosphorylated alpha-synuclein as potential CSF biomarkers for Parkinson's disease. Molecular Neurodegeneration, 2016, 11, 7.	4.4	198
49	Clusterin Levels in Plasma Predict Cognitive Decline and Progression to Alzheimer's Disease. Journal of Alzheimer's Disease, 2015, 46, 1103-1110.	1.2	55
50	Evidence for Immune Response, Axonal Dysfunction and Reduced Endocytosis in the Substantia Nigra in Early Stage Parkinson's Disease. PLoS ONE, 2015, 10, e0128651.	1.1	114
51	Generation and characterization of novel conformation-specific monoclonal antibodies for α-synuclein pathology. Neurobiology of Disease, 2015, 79, 81-99.	2.1	116
52	Topographic Mapping between Basal Forebrain Cholinergic Neurons and the Medial Prefrontal Cortex in Mice. Journal of Neuroscience, 2014, 34, 16234-16246.	1.7	112
53	Stageâ€dependent nigral neuronal loss in incidental Lewy body and Parkinson's disease. Movement Disorders, 2014, 29, 1244-1251.	2.2	122
54	Reduced αâ€synuclein levels in cerebrospinal fluid in <scp>P</scp> arkinson's disease are unrelated to clinical and imaging measures of disease severity. European Journal of Neurology, 2014, 21, 388-394.	1.7	67

Wilma van de Berg

#	Article	IF	CITATIONS
55	Increased Amoeboid Microglial Density in the Olfactory Bulb of <scp>P</scp> arkinson's and <scp>A</scp> lzheimer's Patients. Brain Pathology, 2014, 24, 152-165.	2.1	70
56	Microglial phenotypes and toll-like receptor 2 in the substantia nigra and hippocampus of incidental Lewy body disease cases and Parkinson's disease patients. Acta Neuropathologica Communications, 2014, 2, 90.	2.4	140
57	Changes in endolysosomal enzyme activities in cerebrospinal fluid of patients with Parkinson's disease. Movement Disorders, 2013, 28, 747-754.	2.2	88
58	Cerebrospinal fluid and plasma clusterin levels in Parkinson's disease. Parkinsonism and Related Disorders, 2013, 19, 1079-1083.	1.1	26
59	Regional differences in gene expression and promoter usage in aged human brains. Neurobiology of Aging, 2013, 34, 1825-1836.	1.5	30
60	A non-cholinergic neuronal loss in the pedunculopontine nucleus of toxin-evoked Parkinsonian rats. Experimental Neurology, 2013, 248, 213-223.	2.0	36
61	Cognitive correlates of visual hallucinations in non-demented Parkinson's disease patients. Parkinsonism and Related Disorders, 2013, 19, 795-799.	1.1	33
62	Pedunculopontine Cholinergic Cell Loss in Hallucinating Parkinson Disease Patients but Not in Dementia With Lewy Bodies Patients. Journal of Neuropathology and Experimental Neurology, 2013, 72, 1162-1170.	0.9	38
63	Reply: Quantitative evaluation of the human subventricular zone. Brain, 2012, 135, e222-e222.	3.7	2
64	Patterns of alpha-synuclein pathology in incidental cases and clinical subtypes of Parkinson's disease. Parkinsonism and Related Disorders, 2012, 18, S28-S30.	1.1	54
65	Imaging hippocampal subregions with in vivo MRI: advances and limitations. Nature Reviews Neuroscience, 2012, 13, 70-70.	4.9	9
66	The Proteome of the Locus Ceruleus in Parkinson's Disease: Relevance to Pathogenesis. Brain Pathology, 2012, 22, 485-498.	2.1	53
67	The proliferative capacity of the subventricular zone is maintained in the parkinsonian brain. Brain, 2011, 134, 3249-3263.	3.7	103
68	Diagnostic cerebrospinal fluid biomarkers for Parkinson's disease: A pathogenetically based approach. Neurobiology of Disease, 2010, 39, 229-241.	2.1	67
69	Longterm quiescent cells in the aged human subventricular neurogenic system specifically express GFAPâ€Ĩ′. Aging Cell, 2010, 9, 313-326.	3.0	126
70	Morphometric Changes in the Cortical Microvascular Network in Alzheimer's Disease. Journal of Alzheimer's Disease, 2010, 22, 811-818.	1.2	26
71	CSF α-Synuclein Does Not Discriminate Dementia with Lewy Bodies from Alzheimer's Disease. Journal of Alzheimer's Disease, 2010, 22, 87-95.	1.2	87
72	Prenatal stress and neonatal rat brain development. Neuroscience, 2006, 137, 145-155.	1.1	173

WILMA VAN DE BERG

#	Article	IF	CITATIONS
73	Low-density lipoprotein receptor-knockout mice display impaired spatial memory associated with a decreased synaptic density in the hippocampus. Neurobiology of Disease, 2004, 16, 212-219.	2.1	84
74	A delayed increase in hippocampal proliferation following global asphyxia in the neonatal rat. Developmental Brain Research, 2003, 142, 67-76.	2.1	44
75	Impact of perinatal asphyxia on the GABAergic and locomotor system. Neuroscience, 2003, 117, 83-96.	1.1	57
76	No alterations of hippocampal neuronal number and synaptic bouton number in a transgenic mouse model expressing the β-cleaved C-terminal APP fragment. Neurobiology of Disease, 2003, 12, 110-120.	2.1	37
77	Perinatal Asphyxia Induced Neuronal Loss by Apoptosis in the Neonatal Rat Striatum: A Combined TUNEL and Stereological Study. Experimental Neurology, 2002, 174, 29-36.	2.0	47
78	Developmental apoptosis in the spinal cord white matter in neonatal rats. Glia, 2002, 37, 89-91.	2.5	12
79	c-Jun/AP-1 (N) directed antibodies cross-react with "apoptosis-specific protein―which marks an autophagic process during neuronal apoptosis. Neuroscience, 2000, 96, 445-446.	1.1	20
80	Use of cryostat sections from snap-frozen nervous tissue for combining stereological estimates with histological, cellular, or molecular analyses on adjacent sections. Journal of Chemical Neuroanatomy, 2000, 20, 21-29.	1.0	23
81	Perinatal asphyxia results in changes in presynaptic bouton number in striatum and cerebral cortex—a stereological and behavioral analysis. Journal of Chemical Neuroanatomy, 2000, 20, 71-82.	1.0	43