Jin Y Ooi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5351072/publications.pdf

Version: 2024-02-01

42 2,458 24 42 papers citations h-index g-index

44 44 1764
all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	DEM simulations of agglomerates impact breakage using Timoshenko beam bond model. Granular Matter, 2022, 24, .	2.2	3
2	Influence of various DEM shape representation methods on packing and shearing of granular assemblies. Granular Matter, 2021 , 23 , 1 .	2.2	19
3	Model driven design for twin screw granulation using mechanistic-based population balance model. International Journal of Pharmaceutics, 2021, 607, 120939.	5.2	17
4	An effective sphere-based model for breakage simulation in DEM. Powder Technology, 2021, 392, 473-488.	4.2	29
5	Conceptualisation of an Efficient Particle-Based Simulation of a Twin-Screw Granulator. Pharmaceutics, 2021, 13, 2136.	4.5	5
6	Post-processing and visualization of large-scale DEM simulation data with the open-source VELaSSCo platform. Simulation, 2020, 96, 567-581.	1.8	0
7	A DEM-PBM multiscale coupling approach for the prediction of an impact pin mill. Powder Technology, 2020, 366, 408-419.	4.2	13
8	Effect of particle morphology and contacts on particle breakage in a granular assembly studied using X-ray tomography. Granular Matter, 2019, 21, 1.	2.2	61
9	DEM study of mechanical characteristics of multi-spherical and superquadric particles at micro and macro scales. Powder Technology, 2018, 329, 288-303.	4.2	94
10	Effect of Particle Size and Cohesion on Powder Yielding and Flow. KONA Powder and Particle Journal, 2018, 35, 226-250.	1.7	77
11	An experimentally validated DEM study of powder mixing in a paddle blade mixer. Powder Technology, 2017, 311, 287-302.	4.2	70
12	DEM investigation of mechanical behavior and strain localization of methane hydrate bearing sediments with different temperatures and water pressures. Engineering Geology, 2017, 223, 92-109.	6.3	42
13	Correlation of Volume Ratio and Normalized Permittivity in Particle Mixture. IEEE Access, 2017, 5, 15875-15882.	4.2	2
14	Correlation analysis of solid particles' permittivity and composition using electrical capacitance tomography and Maxwell Garnett formula. , 2016, , .		2
15	DEM modeling of cone penetration and unconfined compression in cohesive solids. Powder Technology, 2016, 293, 60-68.	4.2	66
16	Numerical and experimental study of horizontal pneumatic transportation of spherical and low-aspect-ratio cylindrical particles. Powder Technology, 2016, 293, 48-59.	4.2	28
17	Influence of coarse-graining parameters on the analysis of DEM simulations of silo flow. Powder Technology, 2016, 293, 138-148.	4.2	93
18	Scaling of discrete element model parameters for cohesionless and cohesive solid. Powder Technology, 2016, 293, 130-137.	4.2	119

#	Article	IF	Citations
19	A numerical study of wall pressure and granular flow in a flat-bottomed silo. Powder Technology, 2015, 282, 43-54.	4.2	51
20	Experimental study of anisotropy and non-coaxiality of granular solids. Granular Matter, 2015, 17, 189-196.	2.2	25
21	A Study of Granular Flow in a Conical Hopper Discharge Using Discrete and Continuum Approach. Procedia Engineering, 2015, 102, 765-772.	1.2	16
22	Interpretation of Particle Breakage under Compression Using X-ray Computed Tomography and Digital Image Correlation. Procedia Engineering, 2015, 102, 240-248.	1.2	7
23	Experimental and Simulation Studies of Dilute Horizontal Pneumatic Conveying. Particulate Science and Technology, 2014, 32, 206-213.	2.1	19
24	An experimental and numerical study of packing, compression, and caking behaviour of detergent powders. Particuology, 2014, 12, 2-12.	3.6	65
25	A bond model for DEM simulation of cementitious materials and deformable structures. Granular Matter, 2014, 16, 299-311.	2.2	89
26	Micromechanical analysis of cohesive granular materials using the discrete element method with an adhesive elasto-plastic contact model. Granular Matter, 2014, 16, 383-400.	2.2	115
27	Finite element modelling of wall pressures in a cylindrical silo with conical hopper using an Arbitrary Lagrangian–Eulerian formulation. Powder Technology, 2014, 257, 181-190.	4.2	43
28	Numerical modelling of dynamic pressure and flow in hopper discharge using the Arbitrary Lagrangian–Eulerian formulation. Engineering Structures, 2013, 56, 1308-1320.	5.3	40
29	The role of deposition process on pressure dip formation underneath a granular pile. Mechanics of Materials, 2013, 66, 160-171.	3.2	22
30	Finite element simulation of the pressure dip in sandpiles. International Journal of Solids and Structures, 2013, 50, 981-995.	2.7	18
31	Establishing predictive capabilities of DEM – Verification and validation for complex granular processes. AIP Conference Proceedings, 2013, , .	0.4	5
32	Experimental and numerical determination of representative elementary volume for granular plant materials. Granular Matter, 2012, 14, 449-456.	2.2	15
33	Rarefaction wave propagation in tapered granular columns. Chemical Engineering Science, 2012, 71, 32-38.	3.8	15
34	Influence of grain shape and intergranular friction on material behavior in uniaxial compression: Experimental and DEM modeling. Powder Technology, 2012, 217, 435-442.	4.2	83
35	Discrete element simulation: challenges in application and model calibration. Granular Matter, 2011, 13, 107-107.	2.2	4
36	Assessment of rolling resistance models in discrete element simulations. Powder Technology, 2011, 206, 269-282.	4.2	693

#	Article	IF	CITATION
37	Numerical analysis of silo behavior using non-coaxial models. Chemical Engineering Science, 2011, 66, 1715-1727.	3.8	18
38	Numerical investigation of particle shape and particle friction on limiting bulk friction in direct shear tests and comparison with experiments. Powder Technology, 2011, 212, 231-239.	4.2	92
39	Numerical investigation of progressive development of granular pile with spherical and non-spherical particles. Mechanics of Materials, 2009, 41, 707-714.	3.2	50
40	Experiments and simulations of direct shear tests: porosity, contact friction and bulk friction. Granular Matter, 2008, 10, 263-271.	2.2	96
41	Numerical Modeling of Silo Filling. l: Continuum Analyses. Journal of Engineering Mechanics - ASCE, 1999, 125, 94-103.	2.9	59
42	Numerical Modeling of Silo Filling. II: Discrete Element Analyses. Journal of Engineering Mechanics - ASCE, 1999, 125, 104-110.	2.9	56