Michael O'dwyer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5350442/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Phase 1/2 study of uproleselan added to chemotherapy in patients with relapsed or refractory acute myeloid leukemia. Blood, 2022, 139, 1135-1146.	0.6	39
2	CD38 knockout natural killer cells expressing an affinity optimized CD38 chimeric antigen receptor successfully target acute myeloid leukemia with reduced effector cell fratricide. Haematologica, 2022, 107, 437-445.	1.7	63
3	Feeder Cells at the Interface of Natural Killer Cell Activation, Expansion and Gene Editing. Frontiers in Immunology, 2022, 13, 802906.	2.2	18
4	Targeting hypersialylation in multiple myeloma represents a novel approach to enhance NK cell–mediated tumor responses. Blood Advances, 2022, 6, 3352-3366.	2.5	30
5	Addition of elotuzumab to lenalidomide and dexamethasone for patients with newly diagnosed, transplantation ineligible multiple myeloma (ELOQUENT-1): an open-label, multicentre, randomised, phase 3 trial. Lancet Haematology,the, 2022, 9, e403-e414.	2.2	23
6	Time to response, duration of response, and patient-reported outcomes (PROs) with daratumumab (DARA) plus lenalidomide and dexamethasone (D-Rd) versus lenalidomide and dexamethasone (Rd) alone in transplant-ineligible patients with newly diagnosed multiple myeloma (NDMM): Subgroup analysis of the phase 3 MAIA study Journal of Clinical Oncology, 2022, 40, 8044-8044.	0.8	1
7	Frontline Science: COVID-19 infection induces readily detectable morphologic and inflammation-related phenotypic changes in peripheral blood monocytes. Journal of Leukocyte Biology, 2021, 109, 13-22.	1.5	241
8	Cyclophosphamide alters the tumor cell secretome to potentiate the anti-myeloma activity of daratumumab through augmentation of macrophage-mediated antibody dependent cellular phagocytosis. Oncolmmunology, 2021, 10, 1859263.	2.1	13
9	How to Simplify the Evaluation of Newly Introduced Chemotherapeutic Interventions in Myeloma. Clinical Hematology International, 2021, 3, 27.	0.7	1
10	Realizing Innate Potential: CAR-NK Cell Therapies for Acute Myeloid Leukemia. Cancers, 2021, 13, 1568.	1.7	21
11	Bone Marrow Mesenchymal Stromal Cell-mediated Resistance in Multiple Myeloma Against NK Cells can be Overcome by Introduction of CD38-CAR or TRAIL-variant. HemaSphere, 2021, 5, e561.	1.2	11
12	CD38-specific Chimeric Antigen Receptor Expressing Natural Killer KHYG-1 Cells: A Proof of Concept for an "Off the Shelf―Therapy for Multiple Myeloma. HemaSphere, 2021, 5, e596.	1.2	11
13	Generating natural killer cells for adoptive transfer: expanding horizons. Cytotherapy, 2021, 23, 559-566.	0.3	45
14	MM-155: Phase 3 MAIA Study: Overall Survival (OS) Results with Daratumumab, Lenalidomide, and Dexamethasone (D-Rd) vs Lenalidomide and Dexamethasone (Rd) in Patients with Transplant-Ineligible Newly Diagnosed Multiple Myeloma (TIE-NDMM). Clinical Lymphoma, Myeloma and Leukemia, 2021, 21, S424-S425.	0.2	1
15	The EHA Research Roadmap: Immune-based Therapies for Hematological Malignancies. HemaSphere, 2021, 5, e642.	1.2	2
16	Poster: MM-155: Phase 3 MAIA Study: Overall Survival (OS) Results with Daratumumab, Lenalidomide, and Dexamethasone (D-Rd) vs Lenalidomide and Dexamethasone (Rd) in Patients with Transplant-Ineligible Newly Diagnosed Multiple Myeloma (TIE-NDMM). Clinical Lymphoma, Myeloma and Leukemia, 2021, 21, S252.	0.2	0
17	Daratumumab, lenalidomide, and dexamethasone versus lenalidomide and dexamethasone alone in newly diagnosed multiple myeloma (MAIA): overall survival results from a randomised, open-label, phase 3 trial. Lancet Oncology, The, 2021, 22, 1582-1596.	5.1	141
18	OAB-001: Overall survival and progression-free survival by treatment duration with Daratumumab + Lenalidomide/Dexamethasone in transplant-ineligible newly diagnosed multiple myeloma: phase 3 MAIA study. Clinical Lymphoma, Myeloma and Leukemia, 2021, 21, S1.	0.2	0

#	Article	IF	CITATIONS
19	P-094: ABT-199 and epigenetic modifiers: promising novel combinations for the treatment of Multiple Myeloma. Clinical Lymphoma, Myeloma and Leukemia, 2021, 21, S90.	0.2	Ο
20	Tc Buster Transposon Engineered CLL-1 CAR-NK Cells Efficiently Target Acute Myeloid Leukemia. Blood, 2021, 138, 1725-1725.	0.6	8
21	Promising Preliminary Activity of Optimized Affinity, CD38 CAR NK Cells Generated Using a Non-Viral Engineering Approach in Gene Edited Cord Blood Derived NK Cells for the Treatment of Multiple Myeloma. Blood, 2021, 138, 4793-4793.	0.6	1
22	Examining the Usefulness of the Charlson Comorbidity Index to Predict Early Mortality in Patients with Acute Myeloid Leukaemia. Blood, 2021, 138, 1218-1218.	0.6	0
23	Single Cell Transcriptomics Revealed Molecular Alterations in AML Cell Clusters Relevant to Refractory Disease at Relapse. Blood, 2021, 138, 3316-3316.	0.6	0
24	Sustained Improvement in Health-Related Quality of Life in Transplant-Ineligible Patients with Newly Diagnosed Multiple Myeloma Treated with Daratumumab, Lenalidomide, and Dexamethasone Versus Lenalidomide and Dexamethasone: Update of the Phase 3 MAIA Trial. Blood, 2021, 138, 1655-1655.	0.6	0
25	Venetoclax and Epigenetic Modifiers: Promising Novel Combinations for the Treatment of Multiple Myeloma. Blood, 2021, 138, 4703-4703.	0.6	1
26	Meaningful Changes in Patient-Reported Outcomes in Relation to Best Clinical Response and Disease Progression: Post Hoc Analyses from MAIA. Blood, 2021, 138, 4095-4095.	0.6	0
27	941â€Stromal cell sialylation suppresses T cells in inflammatory tumour microenvironments: a new tumour stromal cell immune checkpoint?. , 2021, 9, A987-A987.		Ο
28	Cybord-Dara in Newly Diagnosed Transplant-Eligible Multiple Myeloma: Follow up Results from the 16-Bcni-001/Ctrial-IE 16-02 Study Show High Rates of MRD Negativity at End of Treatment. Blood, 2021, 138, 2756-2756.	0.6	1
29	Sialyltransferase inhibition leads to inhibition of tumor cell interactions with E-selectin, VCAM1, and MADCAM1, and improves survival in a human multiple myeloma mouse model. Haematologica, 2020, 105, 457-467.	1.7	35
30	MYC dysregulation in the progression of multiple myeloma. Leukemia, 2020, 34, 322-326.	3.3	108
31	The CD38low natural killer cell line KHYG1 transiently expressing CD16F158V in combination with daratumumab targets multiple myeloma cells with minimal effector NK cell fratricide. Cancer Immunology, Immunotherapy, 2020, 69, 421-434.	2.0	15
32	IBL-202 is synergistic with venetoclax in CLL under in vitro conditions that mimic the tumor microenvironment. Blood Advances, 2020, 4, 5093-5106.	2.5	4
33	Hypoxia Impairs NK Cell Cytotoxicity through SHP-1-Mediated Attenuation of STAT3 and ERK Signaling Pathways. Journal of Immunology Research, 2020, 2020, 1-14.	0.9	31
34	Biclonal lymphoproliferative disorders: another association with NOTCH1-mutated chronic lymphocytic leukaemias. Irish Journal of Medical Science, 2020, 190, 1087-1094.	0.8	1
35	Immuneâ€based Therapies for Hematological Malignancies: An Update by the EHA SWG on Immunotherapy of Hematological Malignancies. HemaSphere, 2020, 4, e423.	1.2	4
36	Enhancing Delivery of Smallâ€Molecule―and Cellâ€Based Therapies for Ovarian Cancer Using Advanced Delivery Strategies. Advanced Therapeutics, 2020, 3, 2000144.	1.6	1

#	Article	IF	CITATIONS
37	A novel CD2 staining–based flow cytometric assay for assessment of natural killer cell cytotoxicity. Journal of Clinical Laboratory Analysis, 2020, 34, e23519.	0.9	2
38	Successful venetoclax salvage in the setting of refractory, dialysis-dependent multiple myeloma with t(11;14). Haematologica, 2020, 105, e141-e143.	1.7	11
39	Patient-Initiated Discontinuation of Tyrosine Kinase Inhibitor for Chronic Myeloid Leukemia. Case Reports in Hematology, 2020, 2020, 1-4.	0.3	2
40	Beyond DNA Damage: Exploring the Immunomodulatory Effects of Cyclophosphamide in Multiple Myeloma. HemaSphere, 2020, 4, e350.	1.2	29
41	Evaluation of minimal residual disease in relapsed/refractory multiple myeloma patients treated with venetoclax or placebo in combination with bortezomib and dexamethasone: BELLINI study analyses Journal of Clinical Oncology, 2020, 38, 8547-8547.	0.8	1
42	Current and emerging immunotherapeutic approaches to the treatment of multiple myeloma. Therapeutic Advances in Hematology, 2019, 10, 204062071985417.	1.1	13
43	Targeted Approaches to Inhibit Sialylation of Multiple Myeloma in the Bone Marrow Microenvironment. Frontiers in Bioengineering and Biotechnology, 2019, 7, 252.	2.0	15
44	Arresting Resistance: Multi-Drug Resistant Organisms in Autologous Stem Cell Transplant Recipients at an Irish Tertiary Referral Centre. Clinical Lymphoma, Myeloma and Leukemia, 2019, 19, S333-S334.	0.2	0
45	Cutaneous hypereosinophilia secondary to a lowâ€grade Bâ€cell lymphoma. International Journal of Dermatology, 2019, 58, e146-e147.	0.5	0
46	Daratumumab plus Lenalidomide and Dexamethasone for Untreated Myeloma. New England Journal of Medicine, 2019, 380, 2104-2115.	13.9	684
47	Sugar Free: Novel Immunotherapeutic Approaches Targeting Siglecs and Sialic Acids to Enhance Natural Killer Cell Cytotoxicity Against Cancer. Frontiers in Immunology, 2019, 10, 1047.	2.2	77
48	Long-term safety of single-agent ibrutinib in patients with chronic lymphocytic leukemia in 3 pivotal studies. Blood Advances, 2019, 3, 1799-1807.	2.5	90
49	CyBorD-DARA is potent initial induction for MM and enhances ADCP: initial results of the 16-BCNI-001/CTRIAL-IE 16-02 study. Blood Advances, 2019, 3, 1815-1825.	2.5	19
50	Hypersialylation protects Myeloma cells from NK cell mediated killing and this can be overcome by targeted desialylation using a sialyltransferase inhibitor Clinical Lymphoma, Myeloma and Leukemia, 2019, 19, e159-e160.	0.2	1
51	Mesenchymal Stromal Cell Sialylation Modulates Antitumor Immune Responses In Multiple Myeloma. Clinical Lymphoma, Myeloma and Leukemia, 2019, 19, e93-e94.	0.2	1
52	Daratumumab Plus Lenalidomide and Dexamethasone (D-Rd) Versus Lenalidomide and Dexamethasone (Rd) in Patients with Newly Diagnosed Multiple Myeloma (NDMM) Ineligible for Transplant: Updated Analysis of Maia. Blood, 2019, 134, 1875-1875.	0.6	26
53	High E-Selectin Ligand Expression Contributes to Chemotherapy-Resistance in Poor Risk Relapsed and Refractory (R/R) Acute Myeloid Leukemia (AML) Patients and Can be Overcome with the Addition of Uproleselan. Blood, 2019, 134, 2690-2690.	0.6	6
54	T(11;14) and High BCL2 Expression Are Predictive Biomarkers of Response to Venetoclax in Combination with Bortezomib and Dexamethasone in Patients with Relapsed/Refractory Multiple Myeloma: Biomarker Analyses from the Phase 3 Bellini Study. Blood, 2019, 134, 142-142.	0.6	25

#	Article	IF	CITATIONS
55	Targeting CD38high Acute Myeloid Leukaemia with "Affinity Optimized" Chimeric Antigen Receptor and Membrane Bound TRAIL Expressing Natural Killer Cells. Blood, 2019, 134, 5536-5536.	0.6	2
56	A phase III trial to evaluate the efficacy of uproleselan (GMI-1271) with chemotherapy in patients with relapsed/refractory acute myeloid leukemia Journal of Clinical Oncology, 2019, 37, TPS7066-TPS7066.	0.8	14
57	A Double-Blind, Placebo-Controlled, Phase 3 Registration Trial to Evaluate the Efficacy of Uproleselan (GMI-1271) with Standard Salvage Chemotherapy in Patients with Relapsed/Refractory (R/R) Acute Myeloid Leukemia. Blood, 2019, 134, 2650-2650.	0.6	1
58	Hypersialylation Protects Multiple Myeloma Cells from NK Cell-Mediated Immunosurveillance and This Can be Overcome By Targeted Desialylation Using a Sialyltransferase Inhibitor. Blood, 2019, 134, 138-138.	0.6	1
59	Risk adjusted therapy in chronic lymphocytic leukemia: a phase II cancer trials Ireland (CTRIAL-IE [ICORG) Tj ETQq1 abbreviated frontline therapy with FCR in non-del(17p) CLL. Leukemia and Lymphoma, 2018, 59, 1338-1347.	1 0.7843 0.6	14 rgBT /0v 7
60	European Myeloma Network recommendations on tools for the diagnosis and monitoring of multiple myeloma: what to use and when. Haematologica, 2018, 103, 1772-1784.	1.7	86
61	The dual inhibitor of the phosphoinositolâ€3 and PIM kinases, IBLâ€202, is effective against chronic lymphocytic leukaemia cells under conditions that mimic the hypoxic tumour microenvironment. British Journal of Haematology, 2018, 182, 654-669.	1.2	12
62	The use of single armed observational data to closing the gap in otherwise disconnected evidence networks: a network meta-analysis in multiple myeloma. BMC Medical Research Methodology, 2018, 18, 66.	1.4	24
63	Phase 3 Randomized Study of Daratumumab Plus Lenalidomide and Dexamethasone (D-Rd) Versus Lenalidomide and Dexamethasone (Rd) in Patients with Newly Diagnosed Multiple Myeloma (NDMM) Ineligible for Transplant (MAIA). Blood, 2018, 132, LBA-2-LBA-2.	0.6	30
64	Uproleselan (GMI-1271), an E-Selectin Antagonist, Improves the Efficacy and Safety of Chemotherapy in Relapsed/Refractory (R/R) and Newly Diagnosed Older Patients with Acute Myeloid Leukemia: Final, Correlative, and Subgroup Analyses. Blood, 2018, 132, 331-331.	0.6	19
65	CD38 Specific Chimeric Antigen Receptor KHYG-1 Natural Killer Cells: A Potential "Off the Shelf" Therapy for Multiple Myeloma. Blood, 2018, 132, 3261-3261.	0.6	1
66	CD38low Natural Killer Cells Transiently Expressing CD16F158V m-RNA Potentiates the Therapeutic Activity of Daratumumab Against Multiple Myeloma with Minimal Effector NK Cell Fratricide. Blood, 2018, 132, 3199-3199.	0.6	2
67	The Dual PI3/PIM-Kinase Inhibitor, Ibl-202, Is Highly Synergistic with Venetoclax Against CLL Cells, and TP53-Knock-out Cells, and Under Conditions That Mimic the Tumor Microenvironment. Blood, 2018, 132, 1870-1870.	0.6	0
68	Cybord-Dara Is a Highly Effective Upfront Treatment for Newly Diagnosed Multiple Myeloma. Initial Efficacy Results of the 16-Bcni-001/Ctrial-IE (ICORG) 16-02 Study. Blood, 2018, 132, 3242-3242.	0.6	0
69	Inhibition of Sialylation Impairs Adhesion on Madcam-1 and E-Selectin and Sensitize Multiple Myeloma Cells to Bortezomib in a Xenograft Mouse Model. Blood, 2018, 132, 3204-3204.	0.6	0
70	Platelets Preferentially Bind to Myeloma Cells Bearing Sialofucosylated Structures and Protect Them from Natural Killer Cell-Mediated Cytotoxicity. Blood, 2018, 132, 4453-4453.	0.6	2
71	A novel molecular assay using hybridisation probes and melt curve analysis forCALRexon 9 mutation detection in myeloproliferative neoplasms. Journal of Clinical Pathology, 2017, 70, 662-668.	1.0	2
72	E-selectin ligands recognised by HECA452 induce drug resistance in myeloma, which is overcome by the E-selectin antagonist, GMI-1271. Leukemia, 2017, 31, 2642-2651.	3.3	31

#	Article	IF	CITATIONS
73	Proteomic characterization of human multiple myeloma bone marrow extracellular matrix. Leukemia, 2017, 31, 2426-2434.	3.3	72
74	New developments in the treatment of multiple myeloma – clinical utility of daratumumab. Biologics: Targets and Therapy, 2017, Volume 11, 31-43.	3.0	4
75	GMI-1271 Improves Efficacy and Safety of Chemotherapy in R/R and Newly Diagnosed Older Patients with AML: Results of a Phase 1/2 Study. Blood, 2017, 130, 894-894.	0.6	9
76	GMI-1271, a novel E-selectin antagonist, in combination with chemotherapy in relapsed/refractory AML Journal of Clinical Oncology, 2017, 35, 2520-2520.	0.8	5
77	GMI-1271, a novel E-selectin antagonist, combined with induction chemotherapy in elderly patients with untreated AML Journal of Clinical Oncology, 2017, 35, 2560-2560.	0.8	8
78	Targeting Selectins and Their Ligands in Cancer. Frontiers in Oncology, 2016, 6, 93.	1.3	95
79	Phase 3 Study of Ibrutinib versus Chlorambucil in Patients ≥65 Years with Treatment-NaÃ⁻ve Chronic Lymphocytic Leukemia/Small Lymphocytic Lymphoma (CLL/SLL). Clinical Lymphoma, Myeloma and Leukemia, 2016, 16, S45-S46.	0.2	0
80	Neurotrophins and B-cell malignancies. Cellular and Molecular Life Sciences, 2016, 73, 41-56.	2.4	19
81	Potentiation of Anti-Myeloma Activity of Daratumumab with Combination of Cyclophosphamide, Lenalidomide or Bortezomib Via a Tumor Secretory Response That Greatly Augments Macrophage-Induced ADCP. Blood, 2016, 128, 2101-2101.	0.6	13
82	Minimal Residual Disease (MRD) Status in FCR-Treated CLL Patients at the End of Treatment Influences Progression Free Survival (PFS), Results of the Ctrial-IE (ICORG) 07-01/ CLL Ireland Study, with Mutational Analysis Providing Additional Insight. Blood, 2016, 128, 3237-3237.	0.6	1
83	A Phase I/II Study of GMI-1271, a Novel E-Selectin Antagonist, in Combination with Induction Chemotherapy in Relapsed/Refractory and Elderly Previously Untreated Acute Myeloid Leukemia; Results to Date. Blood, 2016, 128, 4049-4049.	0.6	5
84	Integrated and Long-Term Safety Analysis of Ibrutinib in Patients with Chronic Lymphocytic Leukemia (CLL)/Small Lymphocytic Lymphoma (SLL). Blood, 2016, 128, 4383-4383.	0.6	7
85	A 13-Glycosylation Gene Signature in Multiple Myeloma Can Predicts Survival and Identifies Candidates for Targeted Therapy (GiMM13). Blood, 2016, 128, 4423-4423.	0.6	2
86	A Phase II Multi-Center Study of Lenalidomide, Subcutaneous Bortezomib and Dexamethasone (RsqVD) in Newly Diagnosed Multiple Myeloma - Ctrial-IE (ICORG) 13-17 Study. Blood, 2016, 128, 2117-2117.	0.6	2
87	Ibrutinib as Initial Therapy for Patients with Chronic Lymphocytic Leukemia. New England Journal of Medicine, 2015, 373, 2425-2437.	13.9	1,261
88	Targeting the Pim kinases in multiple myeloma. Blood Cancer Journal, 2015, 5, e325-e325.	2.8	75
89	The cancer glycome: Carbohydrates as mediators of metastasis. Blood Reviews, 2015, 29, 269-279.	2.8	91
90	Drugging the unfolded protein response in acute leukemias. Journal of Hematology and Oncology, 2015, 8, 87.	6.9	22

6

#	Article	IF	CITATIONS
91	E-Selectin Ligand Expression Increases with Progression of Myeloma and Induces Drug Resistance in a Murine Transplant Model, Which Is Overcome By the Glycomimetic E-Selectin Antagonist, GMI-1271. Blood, 2015, 126, 1805-1805.	0.6	4
92	Estimating the Relative Effectiveness of Treatments in Relapsed/Refractory Multiple Myeloma through a Systematic Review and Network Meta-Analysis. Blood, 2015, 126, 2103-2103.	0.6	6
93	Concurrent Inhibition of Pim and Akt Pathways with Pim447 and Afuresertib Activates FOXO3a and Depletes c-Myc to Induce Synergistic Cell Death in Multiple Myeloma. Blood, 2015, 126, 3007-3007.	0.6	1
94	Results from the International, Randomized Phase 3 Study of Ibrutinib Versus Chlorambucil in Patients 65 Years and Older with Treatment-NaÃ⁻ve CLL/SLL (RESONATE-2TM). Blood, 2015, 126, 495-495.	0.6	2
95	The Dual PIM/PI3-K Inhibitor Ibl-202 Overcomes Microenvironmental Mediated Resistance in Multiple Myeloma and Prevents PIM1 Induced CXCR4 Upregulation. Blood, 2015, 126, 5350-5350.	0.6	1
96	Clinical Characteristics, Treatment and Outcomes for Patients with Myelodysplastic Syndromes and Chromosome 5q Abnormalities in the Republic of Ireland. Blood, 2015, 126, 5258-5258.	0.6	0
97	A High Through-Put Screen for Small Molecules Modulating MCM2 Phosphorylation Identifies Ryuvidine as an Inducer of the DNA Damage Response. PLoS ONE, 2014, 9, e98891.	1.1	11
98	AKT as a therapeutic target in multiple myeloma. Expert Opinion on Therapeutic Targets, 2014, 18, 897-915.	1.5	44
99	Nilotinib 300 mg BID as frontline treatment of CML: Prospective analysis of the Xpert BCR-ABL Monitor system and significance of 3-month molecular response. Leukemia Research, 2014, 38, 310-315.	0.4	12
100	Initial Evaluation of Novel Dual PIM/PI3K and Triple PIM/PI3K/mTOR Inhibitors in Multiple Myeloma. Blood, 2014, 124, 5713-5713.	0.6	4
101	Pomalidomide Plus Low-Dose Dexamethasone (POM + LoDEX) for Relapsed and Refractory Multiple Myeloma (RRMM): Results from a Pharmacoeconomic Evaluation. Blood, 2014, 124, 2649-2649.	0.6	0
102	A Cell Culture System That Mimics Chronic Lymphocytic Leukemia Cells Microenvironment for Drug Screening and Characterization. Methods in Molecular Biology, 2013, 986, 217-226.	0.4	5
103	Characterization of a Dual CDC7/CDK9 Inhibitor in Multiple Myeloma Cellular Models. Cancers, 2013, 5, 901-918.	1.7	16
104	Targeting AML through DR4 with a novel variant of rhTRAIL. Journal of Cellular and Molecular Medicine, 2011, 15, 2216-2231.	1.6	18
105	Molecular response to first line nilotinib in a patient with e19a2 BCR–ABL1 chronic myeloid leukemia. Leukemia Research, 2011, 35, e169-e170.	0.4	12
106	Mechanisms of Action of a Dual Cdc7/Cdk9 Kinase Inhibitor against Quiescent and Proliferating CLL Cells. Molecular Cancer Therapeutics, 2011, 10, 1624-1634.	1.9	47
107	The Proteasome Inhibitor Bortezomib Sensitizes AML with Myelomonocytic Differentiation to TRAIL Mediated Apoptosis. Cancers, 2011, 3, 1329-1350.	1.7	14
108	Inhibition of NEDD8-activating enzyme: a novel approach for the treatment of acute myeloid leukemia. Blood, 2010, 115, 3796-3800.	0.6	236

#	Article	IF	CITATIONS
109	Cdc7 kinase – A new target for drug development. European Journal of Cancer, 2010, 46, 33-40.	1.3	74
110	The BH3 Mimetic, ABT-737, Overcomes Stromal-Mediated Pro-Survival Signals and Synergizes with PHA-767491, a Dual Cdc7/CDK9 Inhibitor, In Acute Myeloid Leukaemia. Blood, 2010, 116, 1841-1841.	0.6	1
111	Nilotinib 300 Mg Twice Daily as First Line Treatment of Ph-Positive Chronic Myeloid Leukemia In Chronic Phase: Updated Results of the ICORG 0802 Phase 2 Study with Analysis of the GeneXpert System Versus IS BCR-ABL RQ PCR Blood, 2010, 116, 3427-3427.	0.6	6
112	Practical Considerations for the Management of Patients in the Tyrosine Kinase Inhibitor Era. Seminars in Hematology, 2009, 46, S16-S21.	1.8	15
113	Role of double-stranded RNA-dependent protein kinase in mediating hypersensitivity of Fanconi anemia complementation group C cells to interferon γ, tumor necrosis factor-I±, and double-stranded RNA. Blood, 2001, 97, 1644-1652.	0.6	60
114	Interferon-γ–induced apoptotic responses of Fanconi anemia group C hematopoietic progenitor cells involve caspase 8–dependent activation of caspase 3 family members. Blood, 2000, 96, 4204-4211.	0.6	64