Giovanni De Bellis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5350397/publications.pdf

Version: 2024-02-01

45 papers 1,559 citations

279798 23 h-index 302126 39 g-index

45 all docs

45 docs citations

45 times ranked 2334 citing authors

#	Article	IF	CITATIONS
1	Graphene Based Wideband Electromagnetic Absorbing Textiles at Microwave Bands. IEEE Transactions on Electromagnetic Compatibility, 2022, 64, 710-719.	2.2	8
2	Pathway to tailor the phase composition, microstructure and mechanical properties of pulsed laser deposited cobalt-substituted calcium phosphate coatings on titanium. Surface and Coatings Technology, 2022, 437, 128275.	4.8	1
3	Green Solvents for the Liquid Phase Exfoliation Production of Graphene: The Promising Case of Cyrene. Frontiers in Chemistry, 2022, 10, 878799.	3.6	14
4	Waterproof Graphene-PVDF Wearable Strain Sensors for Movement Detection in Smart Gloves. Sensors, 2021, 21, 5277.	3.8	10
5	Borate and Silicate Bioactive Glass Coatings Prepared by Nanosecond Pulsed Laser Deposition. Coatings, 2020, 10, 1105.	2.6	11
6	Flexible Graphene Based Polymeric Electrodes for Low Energy Applications. , 2020, , .		3
7	Antibacterial Effect of Zinc Oxide-Based Nanomaterials on Environmental Biodeteriogens Affecting Historical Buildings. Nanomaterials, 2020, 10, 335.	4.1	28
8	Effects of the Ionizing Radiation Disinfection Treatment on Historical Leather. Frontiers in Materials, $2020, 7, .$	2.4	14
9	Surface evaluation of the effect of X-rays irradiation on parchment artefacts through AFM and SEM. Applied Surface Science, 2020, 513, 145881.	6.1	11
10	Phase Inversion in PVDF Films with Enhanced Piezoresponse Through Spin-Coating and Quenching. Polymers, 2019, 11, 1096.	4.5	39
11	3D Porous Graphene Based Aerogel for Electromagnetic Applications. Scientific Reports, 2019, 9, 15719.	3.3	25
12	Piezoresistive Fabric Produced Through PVDF-Graphene Nanocomposite Film Incorporation in Textile Via Screen Printing Technique. , 2019, , .		2
13	Piezoelectric Thin Films of ZnO-Nanorods/Nanowalls Grown by Chemical Bath Deposition. IEEE Nanotechnology Magazine, 2018, 17, 311-319.	2.0	23
14	PFM Characterization of PVDF Nanocomposite Films With Enhanced Piezoelectric Response. IEEE Nanotechnology Magazine, 2018, 17, 955-961.	2.0	25
15	Porous Graphene Based PVDF Aerogel Composite for Sweat Sensing Applications. , 2018, , .		O
16	Piezoelectric Effect and Electroactive Phase Nucleation in Self-Standing Films of Unpoled PVDF Nanocomposite Films. Nanomaterials, 2018, 8, 743.	4.1	26
17	Electrical, Mechanical and Electromechanical Properties of Graphene-Thermoset Polymer Composites Produced Using Acetone-DMF Solvents. Polymers, 2018, 10, 82.	4.5	12
18	Nucleation effect of unmodified graphene nanoplatelets on PVDF/GNP film composites. Materials Today Communications, 2017, 11, 163-173.	1.9	48

#	Article	IF	CITATIONS
19	Piezo-resistive properties of graphene based PVDF composite films for strain sensing. , 2017, , .		4
20	Evaluation of the antibacterial power and biocompatibility of zinc oxide nanorods decorated graphene nanoplatelets: new perspectives for antibiodeteriorative approaches. Journal of Nanobiotechnology, 2017, 15, 57.	9.1	31
21	Graphene-based dental adhesive with anti-biofilm activity. Journal of Nanobiotechnology, 2017, 15, 89.	9.1	69
22	Zinc Oxide Nanorods-Decorated Graphene Nanoplatelets: A Promising Antimicrobial Agent against the Cariogenic Bacterium Streptococcus mutans. Nanomaterials, 2016, 6, 179.	4.1	59
23	Electromagnetic and Dynamic Mechanical Properties of Epoxy and Vinylester-Based Composites Filled with Graphene Nanoplatelets. Polymers, 2016, 8, 272.	4.5	45
24	Electro-Mechanical Properties of Multilayer Graphene-Based Polymeric Composite Obtained through a Capillary Rise Method. Sensors, 2016, 16, 1780.	3.8	10
25	Control of the size and density of ZnO-nanorods grown onto graphene nanoplatelets in aqueous suspensions. RSC Advances, 2016, 6, 83217-83225.	3.6	17
26	Electrical and Electromechanical Properties of Stretchable Multilayer-Graphene/PDMS Composite Foils. IEEE Nanotechnology Magazine, 2016, 15, 687-695.	2.0	6
27	"In vitro toxicity studies of zinc oxide nano- and microrods on mammalian cells: A comparative analysis― Materials Letters, 2016, 179, 90-94.	2.6	22
28	Nitrogen-doped graphene films from chemical vapor deposition of pyridine: influence of process parameters on the electrical and optical properties. Beilstein Journal of Nanotechnology, 2015, 6, 2028-2038.	2.8	63
29	Synthesis and characterization of ZnO nanorods with a narrow size distribution. RSC Advances, 2015, 5, 49861-49870.	3.6	49
30	Highly conductive multilayer-graphene paper as a flexible lightweight electromagnetic shield. Carbon, 2015, 89, 260-271.	10.3	122
31	Cyclododecane as support material for clean and facile transfer of large-area few-layer graphene. Applied Physics Letters, 2014, 105, .	3.3	40
32	Electromagnetic absorbing properties of graphene–polymer composite shields. Carbon, 2014, 73, 175-184.	10.3	113
33	Zinc oxide microrods and nanorods: different antibacterial activity and their mode of action against Gram-positive bacteria. RSC Advances, 2014, 4, 56031-56040.	3.6	60
34	Inhibition of microbial growth by carbon nanotube networks. Nanoscale, 2013, 5, 9023.	5.6	63
35	The piezoresistive effect in graphene-based polymeric composites. Nanotechnology, 2013, 24, 465702.	2.6	50
36	Graphite Nanoplatelets and <i>Caenorhabditis elegans</i> : Insights from an <i>in Vivo</i> Model. Nano Letters, 2012, 12, 2740-2744.	9.1	139

#	Article	IF	CITATIONS
37	Synthesis, Modeling, and Experimental Characterization of Graphite Nanoplatelet-Based Composites for EMC Applications. IEEE Transactions on Electromagnetic Compatibility, 2012, 54, 17-27.	2.2	90
38	Electromagnetic modelling and experimental characterization of carbon-based nanocomposites. , 2011, , .		1
39	Electromechanical modeling of GNP nanocomposites for stress sensors applications. , 2011, , .		2
40	Electromagnetic properties of composites containing graphite nanoplatelets at radio frequency. Carbon, 2011, 49, 4291-4300.	10.3	77
41	Carbon nanotubes toxicology and effects on metabolism and immunological modification <i>in vitro</i> and <i>in vivo</i> . Journal of Physics Condensed Matter, 2008, 20, 474203.	1.8	20
42	Screening Electromagnetic Interference Effect using Nanocomposites. Macromolecular Symposia, 2008, 263, 21-29.	0.7	15
43	Carbon nanotubes on Jurkat cells: effects on cell viability and plasma membrane potential. Journal of Physics Condensed Matter, 2008, 20, 474204.	1.8	22
44	The protein scaffold of the lipocalin odorant-binding protein is suitable for the design of new biosensors for the detection of explosive components. Journal of Physics Condensed Matter, 2007, 19, 395012.	1.8	34
45	Effect of different carbon nanotubes on cell viability and proliferation. Journal of Physics Condensed Matter, 2007, 19, 395013.	1.8	36